Soil Samples

					1 A -1-120 1	1	1
Analyte	Container	Number of Samples		Containers per Sample	Additional Containers for Lab QC	Total Containers	
VOCs	EnCore Sampler	Kekawlu	44	3	2	134	
SVOCs	4-oz glass jar	44	88	1	-	88] 2 , 0 / -
Metals	4-oz glass jar	103	88	_1		88	2-3
PCBs	4-oz glass jar	NW	88	1	-	88	
TPH-diesel	4-oz glass jar		27	1	-	27	1-2
TCLP	4-oz glass jar		11	2	<u>-</u>	22]
Dioxins	4-oz glass jar		5	1	-	5]

Soil Sample Containers - Summary

Container	Total # Containers	Min. # Coolers	
EnCore Sampler	134		(1-shipment / day)
4-oz glass jar	318	14	(excludes TCLP & dioxins)

Total Coolers	31 (minimum estimate)

21 Sample

4-400 5 2

176/5 day = 35.2/ day

Table 1. Estimated Sample Containers Kakaako Brownfield Site Characterization - Field Investigation

Water Samples

Analyte	Container	Number of Samples	Containers per Sample	Additional Containers for Lab QC	Total Containers
VOCs	40 mL VOA (HCL)	14	3	3	45
SVOCs	1L Amber glass	11	2	2	24
Metals	1L Poly (HNO ₃)	11	1	1	12
PCBs	1L Amber glass	9	2	2	20
SVOCs	1L Amber glass	9	2	2	20
Metals	1L Poly (HNO ₃)	9	1	1	10
Mercury	1L Poly (HNO ₃)	9	1	1	10
TPH-diesel	1L Amber glass (HCL)	14	2	2	30
Dioxins	1L Amber glass	. 7	2	2	16

Water Sample Containers - Summary

Container	Total # Containers	Min. # Coolers
40 mL VOA	45	2
1L Amber glass	94	9
1L Poly	32	2

Rich 415 grz - 7604

Fax

То	Laura Young	From	Janie Anderson
Company	DOH HEER Office	Direct Tel	808-545-2462 ext: 155
Fax	586 - 7537	Fax	808-528-5379
		Pages	15 (inc. this page)
		Date	1/29/02
		cc	Pich Froitas

Subject Kaka'ako Brownfield Cocs

Laura,

Here are all of the COCs containing all of the missing samples are depicted by an arrow or brackets in the left-hand margins. I am faxing the same package to Rich Freita's at the EPA Region 9 Lab, by request of Cherilyn. Call or email me if you have any guestions or comments.

Jamie

H:\Reproduction\Amec Fax Cover.doc

AMEC Earth & Environmental, Inc. 680 (wilei Road, Ste 660 Honolulu, HI 96817 Tel +808-545-2462 Fax +808-528-5379 www.amec.com

This fax message is confidential. If you are not the intended recipient please notify us by telephone as soon as possible and either return the message by post or destroy it. If you are not the intended recipient, any use by you of its contents is prohibited.

Kakaako Brownfield - Field Sampling Schedule

AMEC Earth and Environmental Project Contacts:

Field Managers: Mike Kamaka, 545-2462 ext. 110

Jan Kotoshirodo, 545-2462 ext. 155

Project Manager: Eric Wetzstein, 545-2462 ext. 128

THURSDAY June 21, 2001 - FRIDAY June 22, 2001

- Identify and mark sample locations at the site using survey flags, stakes, or marking paint.
- Conduct toning survey at the site to identify possible subsurface utilities near proposed sampling locations.

MONDAY June 25, 2001

- Begin field sampling activities
- Collect surface and subsurface soil samples in Zone A located in the northeast corner of the site. Install monitoring well MW08 (surface soil location SS24) also located in Zone A.
- Continue with soil sampling in Zone E if time permits and driveway is accessible.

TUESDAY June 26, 2001

- Continue with surface and subsurface soil sampling activities in Zone B located in the southeast corner of the site.
- Install monitoring well MW07 (surface soil location SS04) in Zone D, and/or continue soil sampling in Zone E if time permits and driveway is accessible.

WEDNESDAY June 27, 2001

- Continue with surface and subsurface soil sampling activities in Zone C located in the southwest corner of the site.
- Install monitoring well MW06 (surface soil location SS33) also located in Zone C.
- Concrete coring is scheduled at 1400 by National Concrete Sawing (839-7406) for sample locations inside building located in Zone D (United Fishing Agency Ltd.).
 Four cores with a diameter of 6-inches.
- Begin soil sampling inside building (Zone D) if time permits.

THURSDAY June 28, 2001

- Continue with surface and subsurface soil sampling activities in Zone D located in the northwest corner of the site.
- Continue with soil sampling in Zone E if time permits and driveway is accessible.
- Develop newly installed monitoring wells MW06 (SS33), MW07 (SS03), and MW08 (SS24).

MONDAY July 2, 2001

- Complete soil sampling if neccessary
- Collect groundwater samples from monitoring wells MW01, MW02, MW03, MW04, and MW05 located in Zone B.

TUESDAY July 3, 2001

 Collect groundwater samples from monitoring well MW06 (SS33), MW07 (SS03), and MW08 (SS24) located in Zones C, D, and A respectively.

THURSDAY July 5, 2001

Complete groundwater sampling if necessary.

I G U R E

																	Ç	wiek l	-
SE	P	4	13	tales Env Contract	Labo	regu	A good	gram Gram			, Olal	ralo		inorganic & Chain of (For home	Traffic Custoc usc CLP	Report ly Reco (rabais)		1 48	ALE
1. Project Cod	2 2 /	Voccuni	Code		3.	Reg	ion N	o. S	AMEC.	1	5. 0	e Shipped	Cemler	L-FODEK		:	. 7. Metrix		8. Preservetive
Regional Inform	1850a				Sa Sa	mpki te (r (Ala Ffou	me) Maj	Toma		Aire	Asmber .		8750	al S CA		Enter in Cotom A) 1. Series y 2. Ground y	Valer.	(Belerin Column 19 1. HCl
ion-Supertund	Program	,							m dam		EUL JUST	a wr		1.00			3 Leachade 4 Flood		2. HMC3 3. NgCH 4. M ₂ SO ₄
iite Hame OKAAKO Y	hometra!	الماما	Hear	- <i>R</i>	4.		1020,		Entyletion CLDs	Long-Benn Action				c. CEENT aton St. A			5 SollSedia	omiv) !	5. K2CR2O7 6. Ice only 7. Other (specif
ay. State to nother,			e Spel II				SF PRP ST			PS RO RA OAM	Hu	uutsv	ille;	AL 3580 1 Hayes	ا آ	i i i i i i i i i i i i i i i i i i i	7. Waste (H & Other fap Column A	ectly in	in Column D N. Not Preserved
CLP Sample	A Matrix	8	C	D	E		IS An	Bhsi			F	,	SO VI	60	1	H	意味 /		r k
Numbers (from labels)	(from Box 7) Oser	Conc.: Low Med High	Type: Comp. Grab			Cycles	100 Company	ТТ		Tradii	nal Spéci ng Numb g Numba	ier		Station Location Mentifier	Yes Sa	Day! r/Finte mple ection	Corresponding CLP Organic Sample No. ;	Sempler hillists	Field CC Guelifier B=Bark S=Solte D=Bupleste R=Rheele PE=Pertem Evel.
N05Y2	2	L	6 **C		N		H	H	0.45 pm	Fixe-	216051	and Re	R O	mwo2	nskal	1/6870	70802	L	PE = Péritom Enal. — - Alpi a QC Sample
1405Y3	2		1	2	X						1		•	m402	1	70825	Y0803	100	D
11705 Y4	2		9	2	X					5- <u>3-</u>		•		muol		/6985	Y0864		
MYOSYT	2		*	2	X			Ц		<u> </u>	ŀ		· .	mw03		1095	Y0807	196	
MY0531	2		2	2	X.	Ш		Ц						MW OC		10915	Yopii	R	
140604	2	1	2	2	<u> </u>	\bot	4		<u> </u>		l		- 2	mwo6 = =		/109	Y0821	1/2	
140405	2		#	2	X			Н	<u> </u>		·.	. ;		mwa 8		1220	Y0875	1/4	·
140614 140617		V	3	2	4	Н	-	H	-	<u></u>	<u> </u>			nwof		1415	40834	10	
1400.1	4	4		2	₩	Н	-	\vdash	-	;			Ŋ.	OMA	V	/1545	40837	gle	R.
niprinent for Ca omplete (CA)	Se ()	Page			_		ed for		matory QC		Ac	lditional Se	ampler. Si	Ouspries	<u> </u>	Ch	in of Custody Suel (lumbeds)	
										Cha	n of C	ustody	Reço	rá		- 4:	-		
elinquished by			3	71 Da	te/T			tace	ived by: (Sign	siura)	:	Reinqui	shed by:	(Signature)	Di	ate / Time	Received by: (3		
elindushed by	(Signet	we)		Da	1.7 10/1	me		Rece	ved by: (Sign	itra)	2)	Relinquis	hed by:	(Signature)	D	ats / Time	Received by: (S		
elinquished by	(Signale	rej		Da	<u>. </u>	me		Rece (Sign	ved for Labora sture)	lory by:		Cak	e / Time	Remerks: Is c	ustody se	el intack? Y	Nitron a		2 north an
				<u> </u>	<u> </u>		L							ل					

Green - Region Copy
Virisin - Lob Copy for Return to Stagion
Validar - Lob Copy for Return to CLASS

EPA Form 9110-1 (8/99)

Bas Reverse for Additional Standard Instructions
"See Streams for Purpose Code Instructions
QQQA QQ

&E	P	4	ا. المراجع	etes Envi Contract	Labore	<i>t</i> ory	Progn	em So		_ `		0	wlv	9/01			Inorganic & Chain of (For Inorga	Cust	ody i	lecord	Case No.		448	. 10	
1. Project Code	2. A	ccount	Code	• •	3. R	legic <i>G</i>	as No.	San A	rolling Co	a, C	4	15.	Oale:	inlepped mai	Carrier	بنا	FOREX			:	7. Maisix Ænserin	:.			servative ar b
Regional Informa	tion		· - ····		Sam	pleir	(Marik CUM	al l	Ton	j.,		Air			194	13	3 -8755	Ola.	X 31	זיל	Cottoned 1. Suit		aler. ater	Cotu	MATER HCI HNO3
Non-Superfund F	rogram	-			Sam	pler ***	Signia	lune U	n A	m	- نه پخ	6.	Ship]	p: VVQ	lIn	一。 化、	CEENT	M)			3. Les 4. Fiel 5. Soil		ent	3.	N#OH H ₂ SO ₄ K ₂ CR ₂ O ₇
Site Name Vokaako Br	munf	ield	hnl	-8	4. F	and Jurpo	66°	A E	CLEM FA		asg-Tions Iction FS						on St. A L 3580				6.084	High o	niy) sh ontvi	€ 16. 7. (loë anly Other (specify in Column D
City, State Horsalyly, H			Spill (C		_!	SF PR ST FE	0		REM RI SI ESI		RA RA DAM NEVED						L 3580. Hayes		ကို ရှင် ကြိုင်း	No. of the last of	Con	inin A			Not Preserved
	A Matrix (from Bog 7) Mer.	B Conc.: Low Med High	C Sample Type: Comp. Grab	D Presec- valive (from Blor 6)	1 1		Anel Guy	Siever and a service and a ser	# H		Trac	ional S Jung N Jag Stu	pécilic lumber mbers				Station Location Identifier		H MofDay Yeari Tin Sampli Collection		Correspon CLP Orga Sample N	nic ·	J Samph Initiali	9=1 P=1 PE=	K Field QC Qualifier Sust S = Spike Duplices Rinaste Perform Enal
W0542	2	L	696	2	X		\prod		845	Aur J	in	-DIG	estu	NU	NO.		nwo2-	06/2	ghil	820	Y0802	ي (1/2	7.0	Not a CC Sample
MY0573	7		7	2	X							$\overline{\mathbf{I}}$;	•:	'n	4102			825	Y0803	Ş	146	1.1	D
MYDSY4	2		9	2	X				_			7				r	wò l		7	1905	Y0804		16		
myosy7	2		9	2	X	П	П			,		1			<i>\$</i>	n	W03		7	96	Yos		196		
MY0521	2		9	ス	X	П	П	Т			.:	1				4	MUNI			44	Yopil		T		
MY0604	2	.	9	2	X	П	П				:	T		 . i	Ų	1	nWole =		7	09	Y082		12		
my duos	2		3	2	X	П	П					7	: .			W	Wo &		7	220	Y082	5 1	92.		
MY6614	2		15	2	X		П	T			,	V		**		19	awo7		17	415	40834	, ;	17		
my0617	4	V	N	2	X		\coprod			:	<u>:</u>				ÿ	-	owil	Ľ		52/5	42837		The		R_
Shipment for Cas Complete (17)14	*	Pag		Sample(a) to be MV				alory GC	C:	.		Add	Nonel S	ampler S	igno	lures	<u> </u>		Chal	o of Custody	Seal I	lumber(s	*	C ?
				-	-					:	Ch	ein e	of Ci	istod	y Reço	ord		_		<u> </u>			.,	. * ~ ^	i ni Salah
Relinquished by:	(Signati	ne)	۶	الهر	de / Ti	we .	10	eceiv	ed by: (Signa	twej:		•	Relinqu	ished by:	(Si	mature)	Т	Date	Time	Received	by: (Signature	1	36
Stappary 1	n 12	₩	* *		Ø	130							ة ن <u>ي</u>									}	, (s	in in in in Vinita	
Relinquished by:	(Signati	ne)	x /		de i Ti		_	eceix	red by:	(Sigma	tora)		\frac{\frac{1}{2}}{2} \frac{1}{2}	Refinqu	ished by:	(S)	(mature)		Date :	Time :	Received	by: A			100
Relinquished by:	(Signati	we)		De	de / Th	me ·	R	eceix Signa	ed for Li ture)	aboral	lory by:			De	le / Time		Remarks: ls (custod	y seel in	tact? Y/l	Vinone	•	•		

Distribution:

Grose - Region Copy

Yellow - Lab Copy for Return to Rugion

Yellow - Lab Copy for Return to CLASS

EPA Form 9110-1 (8/99)

See Reverse for Additional Standard Instructions 'See Reverse for Purpose Code Definitions 39213 ©

(F)E	P	H	Juilea 2	Contract	ironn Labo	rator	Prot Prop	in ak u Berjek	1 Адепсу					Inorgani & Chain of (For inorg	Cust anic Cl	ody P Ana	Record Mais)	Case No. 2914	48	
1. Project Coda	2.	Acceun	Code		3.	Reg	on N		impling Co. HUEC	Walou	5. Date	e Shipped	Carrier	* FEREX			-11	7. Metrix (Enter in		8. Preservative (Ederá)
tegional Inform	ation				Sa	mple He	(Ne (fa	nel	a Tow	a ·	Aidel	wimber		B 8 255 ()!28	350	1	1. Surfaçe VI 2. Ground W		Columo (1) 1. HCl 2. HNO3
ion-Superfund I	rogran	1			Sq	mple	Sign	etuit		511/d	6. Shir	nto:	el T	nc. (SEA	JT)	<u>u)</u>	٠.	3. Leachale 4. Field 5. Soil/Sedin		3. MaOH 4. H ₂ SO ₄ 5. K ₂ CR ₂ O ₇
iile Name Kakaako	Brow	unfic	eld U	luit 8	14	Pulp Lead	ges,	đ	CLEM	Long-Time Action (TFS	111	b Wa	Ohin	aton St. AL 3580	μE	,		6. Oil (High of 7. Waste (High of 8. Other (apr	only) gh only)	6. Ice only 7. Other (speci in Column I
City. State Homplulu,	ĺ		e Spill K				ir 1812 1800		REM FRI Si ESI	RA CAM HPLD	ATTN:			y Hayes		٠.		Column A		N. Not Preserve
CLP Sample Numbers (from labels)	A Malrix (from Bex 7) Oher:	B Conc. Low Med High	C Sample Type: Comp. Grab	Preser valive (from Box 6)			SAN	Š		Teaclúr	F sal Speci 9 Mumb Number	fic er		Station Location Identifier	,	H Mo/Da Year/Ti Sampi Collecti	ns e	Corresponding CLP Organic Sample No.	Sample: Initials	Cualifier 8=Sphe 9=Depleale R=Rassio FE=Parlam Eval.
Y0602	G	L	G	6				П						SA22	06	28 M	450	Y2819	1	Hota QC Save
140603		\coprod			Ц	Ш		Ц						5822			DUZ	42830	UYL	
NY0529					Ц			Ш						SS02			1160	40822	The	
NY0600					Ш		_	Ш						SAO2			105	40827		
NY0601					Ш			Ц						5802		- /	llo	428ch	No.	
140606	\bot				Ш		_	Ц	<u> </u>					5509			1785	10826	le	
140607		<u> </u>	\sqcup		Ш	Ш		Ш	<u> </u>					S607			230	Y0827	92	
40608		!]	Ш	Ш	1		<u> </u>	÷				22#08			1235	Y0828	1	
my0609		Ц				Ш	\perp			· · · · · · · · · · · · · · · · · · ·				880 SAOR			1240	Y0829	1 X	
nyoblo	<u> </u>	<u> </u>	1	1	\coprod	N J		Ш						SBOX	V		1245	Y-870	Ye	
hipment for Cas omplete? (YN)	ie)	Pag e of	1	Sampl s()	a) to b	e Us 	ed for	Lab	xalory QC		^<	idilionet S	ampler Si	pretures			Chai	n of Cusiody Seal I	Number(s)	
į										Chai	n of C	ustod	y Reco	rd	·		ب <u>ر است</u>			71
lelinquished by: Arknow			ya.	A D	nte / 1			Rece	ived by: (Sig	netwej	9	Refinqu	ished by:	(Signature)		Dalie .	Time	Received by: (Signature)	
einqueited by:	Signa	ture)			0ke / 1	7,000	_	Rece	ived by: (Sig	mature)		Relinqui	ished by:	(Signature)	1	Date.	Time	Received by: (3	Signature)	
elinquished by:			D	Date / Time Received for Laboratory by: (Signature)							Da	le / Tima	Remarks: Is	custody	r seal îr	Mect? Y/R	Unone			
Intribution: (iroen - Re Visita - Lai	igion Cop h Copy fo	r Return t	o Region	Pinik- Yellor	-CLA!	S Сар Сэру	er ite	tem to CLASS	EP	A Fo	rm 91	10-1	(8/99)			*****	"See Reverse	for Addition for People 924	al Standard Instruction Code Deficitions

				and the second	· · · · · · · · · · · · · · · · · · ·		biomanic	Traffic Report	Case No.		
			Environmental P act Laboratory P	9 38	ty or seek as a	_* *	& Chain of	Custody Recor ric CLP Analysis)	1 294	48	
1. Project Code	2. Accou	ni Cirda	3. Region	No. Sampling		5. Date Shipped Ce	nter		7. Medric *	18	. Preservative
D-3-3 8-4			g		ie G	142601	D#L		(Enter to Columns)		Preservative (Elevin Colom 0)
Regional Inform			Sampler (Daire	Alstel Kumber			1. Sufface V		1. Ha
Non-Superfund	Program	<u> </u>	Sampler &	máladil	Domona	\$75.	1719 SID		2. Ground V 3. Legichale	Neker :	2. HNO3 3. Naoh
<u></u>	. T. '		Semptor 6	4 Ill		SENT	WELD DE	SENTILL)	A 5144	nemá ?	8. H ₂ 80 ₄ 5. K ₂ CR ₂ O ₇
Site Name		-	4. Purpos			1160	WOT JOHNEY	ST NE	5 Soll Section 6 Old High	only)	6. ICE ON
KAKAAKO		field, and			T IPS	republi	SVILLE	- 354 <i>01</i> -	7. Vijste (H a. Other (spi	gh only) acily in	7. Other (special for Courtin C
City, State Hoppiblicacia	Hr s	ite Spill (D	PRP 51		I I I I I I I I I I I I I I I I I I I		in the second of the second		Column A	, ,	N. Not Preserve
CLP	A B	C	E-RAS	neducele l	WPCD .	ATTNE BLIVE	ealy than				
Sample Númbers	Metrix Conc	:: Semple Pres	per- T C	7 III	Region	nál Specific	Station	Mo/Day/	Corresponding	Samples	Field OC
(from labels)	(from Low Box 7) Med	Type: val Comp./ [fig			i necki or Tag	ng Mumber Numbers	kocation /	Veer/Time Sample	CLP Organic Sample No.	frillials.	Qualifier 8 = Greek S = Spain 9 = Duplicate 8 = Piritate FE = Piritate FE = Piritate
	Other: High	n Grab Bon			ार्ड । इंडीस्ट्रेस्ट			Collection	5)		D = Duplicele R = Piesele
· INACA	5 L	+ , ,					3				PE = Putcem Evel — = Not a CC Sarapi
MYOST	3 1	1911					\$534	6/26/01 410	707x9	90	-
uyosta		1-1-					3304	500	YOTXA	9	
MYDSND				<u>- </u>	<u></u>	<u> </u>	SA04	610	YOTYO	9	
MYOSWI		1-1-1-1					58146503	576	YOTY	9	
WYOSWZ		1 1 1					SS03861-72	580	YOTYZ	9	
HV05W3		4-4-4-4	-4444				SST2SA 17	1590	Yp743.	W:	-
MYBSW4		++++			<u> </u>		SAIZ SEL	575	PYFOY	45	
MYDSWS							\$812-5527	655	ZYFOY	43	
MYDSWG		1 3 30					5577	1615	YOTY6	(2)	
FWEOKN			X				SAZZ	1620	f y f a Y		
Ripment for Ca Complete? (V/(3	ge 4 Sampi	e(s) to be Used	er Laboratory	QC `	Additional Sample	r.Signatures	Cin	in of Custody Sept (Ammhes(e)	
							<u> </u>		<u></u>		
	n				Chal	in of Custody Re	cord	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			· .) (
distributed by	(Signature)	<u> </u>	Date / Kinis :	Received by	Applicated of a		iý: (Signation)	Date / Time	Received by: (S		Tipn!
Ully IM	11//	ji.	01 1930	. f :			÷.			N	
delanquistied by:	(Signature)		Date / Time	Received by	: (Signature)		y: (Signature)	Date / Time	Received by: (4		
	D.										istoria. Santining samu
Relinquished by:	(Signature)		Date / Time		Laboratory by:	Date / Th	ne Remerks: 1s o	custody seel intack? Y/	Wingne	****	
				(Signature)							

Matellaulau

Grave - Ragion Copy Write - Leb Copy for Return to Region - Yellow - Lab Copy for Return to CLAS EPA Form 9110-1 (8/99)

See Reviews for Additional Standard Instructions
See Service for Purpose Code Definitions

O O A 3 1

inquisited by:	(Signati			Di	do / Tir		Rece (Sig	ived for nature)	Labo	ratory b	у.			Datë /	Time		Remari	is: Is cu) Stody sea	intect?	YAMAG	ńe	<u> </u>	videntin is		President Services	**
no district by	(Signate	vire) 🦂	,	≨ Di	nej in	N8	Reco	ived by	: (Sig	yrelute)	A SE] } 	Rei	nijulsku	ed by:	(Signatu	ion)		Cei	e / Tune	* . O. C	teceive	d byg f3	Nyvietoni	3.		111
Inquished by	MHz	Y'a	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	pa jo		10	Reca	ived by	: (Sig	pisterė)	A. Into	1		注	W.W.	(Signali							; ;				,
		i.;	*** 'I	\$ ^ (•	2		.e				n of (92				n.	ŧ <u></u> :	- - +					10 CH			1
pinjent for Campleto? (Yell		1 of _	1	ST.						<u> 83</u> -	<u>√</u>		Č.	10 10 100			i S		•		3				£. ``	1	}
oment for Ca		Page	u s		in ha	Linder	nr i ab		de	🎉 .	-60	ła	Alleria	- (A	4625	nalibres	- 6			ici Ici	ain of	Custor	v Seid I	granpa de	1	<u> </u>	
dia 200							44			- 2				. ak	. ji	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- , 🖫				<u> </u>	1	<u> </u>	+
	11-11-12		78%	1					<u>.)</u>	* <u>\$</u>			<u>.</u> _ £	\$	13.53	in .		S.		6			3		£4.	S	ì
X		1111	18	ġ.						<u>\$</u>	T'S'			18 %	E O	()	 			1			; ; ;			<u> </u>	-
3 2 3	20 Co	60 C 2 60 80 9 9 1	1 2	134	13.18	39				100	37 G			2		E				·	 	•		1		e F	+
77 3	11 7			rgi j			-1-:	}		~ (<u>}</u>	<u></u>	~·	2		₹ <u>;</u> 0:	30,4	Ç.	ê	3	[30]	-			:1			-
	امرين		,					1	Q.	3- 2- 14-24	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	· .	i de C	考し	<u>.</u>	4 (1) (1) (1) (1) (1) (1) (2) (1)		5	# <u>*</u>	200		, <u>.</u> , ·	13	32	<u> </u>		-
405W9	5	-	6	le			73			प्रोह्म. स्टेड	ji b.	<u>S</u> . (d		55 (4	<u> </u>	1		<u>Yo</u>	718.	98			<u>ئ</u> د -
YOSW4		L	4	6					1		0 3 V-5		(()	(1) J	(c)		, 8 Z		while	losta	0	70	7 Y 🔻				1
41			C A G	Preses- valting (Index Box B) Other		P TO SHOW!		A TOWNS	では、これでは、	· · · · · · · · · · · · · · · · · · ·		el Spec d Numbe	THE PROPERTY OF THE PARTY OF TH	The state of the s		1. 1. 8. 1. 8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Station ocalica santifie	() 4	Mol. Year San Colle	lary Pinto	,	orespor CIP Org Sample	sante!		DE LEGIS	Fleid C Quelifi Black S Replicate Structure Fluido Ratio OC	e = 80
risuje syrotulu,	HE	Site	Spitib	·			, ĝ.	33	7			ATTN		LIVA LIVA	20/	M H	age	ور	SAN NE 580			⊖ €0	iumi Aj	Ç Ç	, N	Nói Pre	star
akaak				uit 8		urpos ad					5 × 5	in decre		lo _ç	May.	h in		757	LON	10000000000000000000000000000000000000		7.0		in only) clly in	erato.	Other (Spe
	1, 16			·				w(h)	a		d .	3.5	, T	KN	111	VE)		oc.C	Seki	TIME	5	1.7	NS poin	aier tent mby) i(conty) ncby in	是	HASO ₄ KaCR ₂	o,
Superfund	,'		<u>.</u> .		1 5	121	134	W	Ď.	q	, A		5	97)	9 5	OD.	900 e		C TO	235		2.6	niece W Gund W artike	aler g	13. A.O.	HCI HMO3 NEOH	
Jonel (mione	į į				z.			YM				6/2	40		D	112		ų,	- 4.	\$ 6		Enter t	in Mile	ja k Ig		ini) (1) perio historiani	1
Project Code			*			2.5	*	Impling		<u> </u>		5 80	n Shin	ond 7	cilifine	• • •	(For	ediğet	ustody ic CLP A	ratysis)	7	Matrix		+48	i i) [1
St. 1287		28.	C	ies Env	i dhon	lore P	No.		7							** **********************************		n of C	ustoc	Rece	rd i	,	an	410			

Ä
ב מו
Š
02:51PM
日本市の
Z
(808)528
5379

ÆE	DΛ	Unite	d State Co	s Environ	mente crater	l Protecti y Prograi	ion Agency m	& Ch	rain of Cu	affic Repo ustody Re	cord				C	ase No. 29 /	148	
4. Doning Code					•	-				CLP Analysis							110	
Project Code	}					Z. KOBO	ou stor 23au	mpling Co. ALVEC	.	4. Date Shipp 6/25/01	ec Canie	HL		•	В	. Nistrice dentaria	ľ	7. Preservative . (Enterin
Account Code	-				-	Sample	r (Name)			Airbil Number					\neg	Column A)		Calemo OJ
						Sh	effan	y Tom	a,	848.	3310	113				1. Surface W 2. Ground W		1. HCI 2. HNO3
Site Name						Sample	r Signature	~ 4 A -		5. Ship to:	^ -		1		6	3 Leachate 4. Field OC		3. NaHSO4 4. H2SO4
Kakaa	KOE		mt	ielo		ACC	AMMIN .	Moon		CEIMI	CON	p. CCE	EIMIC)		Į.	5. Soil/Sedin	ient	5. toe only
unit8						3. Pug	ſ	erly Action	eng-form etten	10 De	ank	huse	SDR.	<i>ac</i>		6. PE-water 7. PE-soil		6. CH3CH 7. Other (specify
City, State	·	I Sir	o Snill	ID Op th	-01	1 1	BF PRP	□REN [TRIPS	Nama	<i>g</i> ans	icht, f	ST 028	52	I	8. Other (spe		in Column D)
Honolu	ha H	1	13 KAPANI	O CP III	HOL.		ST FED		AD Ay	aten: S	Ucasa	la/via	1-+		l	Column A	' [N. Not Preserved
CLP	A	B	C	70	Г	يـــاــــا	E		JONIA J	F ATTIN 3	t savi	6	T H			7	- , 1	T K
Sample	Metrix	Conc.:	Same	e Preser-		ł	RAS Analysi	5		al Specific		ntion	Mo/Da		Cor	responding	Sample	Field QC
Numbers (from labels)	(from Box 6)		Type	valive drom	öteine	TA teorei	AT Z. čene elektý	Aï Z luno elata		ig Number Numbers		ation atilier	Year/Tir Samo		CL S	P Inorganis ampie No.	Initials	Qualifier
(acim safeso)	Other:	Low	Comp	1 Box 7)	PR*	7 14 8	PR 7 14	pp 7 14 (2)		,			Collecti		-			B = Blant B = Field Spike D = Field Busicate 2 = Blante
		Med	Gra		v	IOA	PNA	Pest! POB					<u></u>					R = Riverts PE = Parform Eval.
YOTO L	5	DAY	9	5	<u> </u>		<u>×</u>	×			5	531	6-25-01	1524	MY	0597	18119	7
Y0702	5	1.		5			メ	X			5	331		1525	MY	0568		D
Y0703	5			5			×	X			5	131		1927	M	105 49		
Y07D4	5			5			X	X				331		1530		05 RO		_
Y0705	53			5			Ж	×				330		1625		105R	Π	_
Y0706	4			5			X	X				WI		1640		405R2	.17	В
Y07D7	5	П	П	5			Х	X			99	322		105		405R3	Π	-
Y0708	5	\sqcap		5			×	X	1			29		סטדו		40504	1	_
אסדט ץ			П	5			X	×				129		17/0		Y05R3	11	
70786		V	V			K			1		Q			1640		Y0582	W	В
Shipment for Ca	ige	Pao	2	VOA MS/N	ASD Re	equired?		mple#:				Sampler S	gnatures			of Custody Sea	l Number	
Complete? (Y)	99 .	af	2	ENA MSA				mple#:]					-	·	
CD servicion 7	don state		حد المس	PestPCB			t de la constantina della cons	mple#:		· · · · · · · · · · · · · · · · · · ·	<u> </u>							
*PR provides 7- prelutionary resul			natyoc	al costs.	heril.	unter y res	uis. Pega	cats int	Chain of	f Custody	Record							
Relinquished by				D	ale / Ti	me	Received t	y: (Signature	Ŋ	Relinquis	hed by: (Si	ynature)		ete / The		Received by: (Signature	
Phanklay	n don	<u> </u>	i	td29	d I	930										_		
Religioshed by				O.	ale / Ti		Received t	y: {Signature	3)	Relinquis	hed by: (Si	anature)	C	late / Timu	,	Received by: (Signeture	}
•				Ì	1									1				
Relinquished by	: (Signa	turej	****	D	ake / Ti	ime	Received f (Signature	or Laboratory J	by:	Date	/Time	Remad	s: is custody s	eel intecli	YNIn	OR#		
Olstribusion: Blue - White	Region Cop	n For Redus	io SMC	Pfirs - SAV	O Copy ab Com	for Reivin	to Region		****		<u>,</u>							Standard Instructions Code Definitions

EPA Form 9110-2 (2/99)

**See Reverse for Purpose Code Definitions

CHAIN-OF-CUSTODY RECORD

TURNAROUND TIME: AMEC EARTH : ENVIRONMENTAL DATE: 66/25 101 ADDRESS: TEG-PROJECT.#: PHONE: (808) 545-2462 838)5285379 LOCATION: KAKAAKO BENJAIFIELD CLIENT PROJECT #: CASE # 201544 PROJECT MANAGER DATE OF 6/25 COLLECTOR: Total Number Of Containers Laboratory Note Number Sample Sample Number | Depth | Type Time Container Type FIELD NOTES KBDD 5524 6945 SA24 0955 KB002 SB24 1015 KB004 3516 145 KBOOL LAB DC SAIL 1150 **LB107** LABAC 5616 1205 LBOOR 1520 KBOIO SS31 1527 SAZI LBOIL SB31 1530 LB012 IMB 1640 LB013 5522 1645 KB015 S\$29 1700 CBOIL SA29 17 10 18019 SB29 1712 KB 020 LAST ENTRY DATE/JIME RECEIVED BY (Signature) RELINCUIBHED BY (Signature) DATEITIME SAMPLE RECEIP? LABORATORY NOTES: 06/15/d/1435 TOTAL NUMBER OF CONTAINERS DATETIME RECEIVED BY (Signature) BELINOUSHED BY (Signature) DATEITIME CHAIN OF CUSTODY SEALS YININA SEALS INTACT? YININA SAMPLE DISPOSAL INSTRUCTIONS RECEIVED GOOD COND./COLD TEG DISPOSAL @ \$200 each O Pickup () Return MOTES:

CHAIN-OF-CUSTODY RECORD

OLIENT: K ADDRESS: (SOK)				ONVENMEN						DATE	PAC	MEC	T#:	.:	,		_page_ 3rountie	2		
HONE:COS_	CT # _	ase#	Poisu	FAX:FAX:						COLL					· · ·			DATE COLLEC	OF TION:	مستهمي
Sample Number			Sample Type	Container Type	LANGE CONTRACTOR						3/3		 8 3 8 8				FIEL	NOTES	Total Number	Laboratory
KBV44	5436	1210	SOIL		X															
KBOUS	SB36	1215			X											$oldsymbol{\perp}$				$oldsymbol{\perp}$
KBO46	SB36	1215					\X									1_				L.
KB047	DW2	1330	wher	-			X		$\perp \perp$						_	1_	PINSME			_
KB050	5504	1580	SOIL						i									···		
KB053	SBOY	1570			X														_	
KB055	SS12	1540					IX				·				\bot					L
KB056	SAIZ	1545			IX															
KB057	5812	1555			T X										_Ľ					
KBV5 8		1615					X								\perp					
	SAZZ	1600			X															L
KB060		1630			M			'												
				ST ENTRY				-												
																				L
										-										\perp
													1_							1_
														Ш						
	Ī															1_			L_	丄
ELINOUISHED BY			DATE	•	O BY (Sig	nature)	DAT	ЕЛІМЕ			SA	MPL	E REC	CEIP1	r	_	LABORAT	ORY NOTES:		
FUNCUISHED BY			SPI 16		O BY (Sig	nahre)	DA	TE/TIME		YAL N							_			
										als H							_			
			E DISP	DSAL INSTRUCT	TIONS	VI6		 		ECEIVE	D G	OOD	CON	D./CO	<u>LD</u>	+				

CHAIN-OF-CUSTODY RECORD DHC AIRBILL #: 875 971 9485

CLIENT:	MEC	ENE	TH <	ENVIRONME	NTAL		_ DATE:	06/24	olol		PAGE	_OF	2	
ADDRESS:							1 750-f	noject i			·			
DUONE-	(808)	549	5-24	62 FAX:	-		LOCA	TION:	KAKAAK	D B	rantfield			
CLIENT BOOLE	CT #.	CUSC#	Pols	44 PROJECT M	ANAGED.				· -			DATE OF OLLECTION:		
CLIENT FACE	14 1 T		· · · · · · · · · · · · · · · · · · ·			7 7 7 7	- COLLI	ECTOR:		,	o		المراجع المستحدث	
Sample Number	Depth	Time	Sample Type	Conlamer Type	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.						FIELD NOTE	s	Of Containers	Laboratory Note Number
FB021	5535	0855	SOIL			X								
KB022	S435	0910			X									
K8023	5335	1915			IX						·			
K8024	5538	1020				X								
KB 006	SA38	1005			X									
		1028		,	X		·							
KB028		1028				X							Ţ	
KB029		1040	1-1-											
		1045												·
KB037-		1055		£,g	X									
KB033		1097												
18035		1120												
		1125				T X								
(B037)		1130												
K8038		1139			IXI									
	S840	1140	,		X						· ·			
Ke040	SBUO	1140	11			X								
18041		1149			TX									
RELINQUISHED BY	/ (Signa	lure)	DATE	· · · · · ·	ED BY (Signature)	DATE/TIME		SAMPLE R	ECEIPT		LABORATORY N	OTES:		
Jan Color		dulo	1/142	0			TOTAL NU	MBER OF	CONTAINERS					
RELINCUISHED BY	Y: (Signa	iture)	DATE	JTIME RECEIVE	EO BY (Signature) DATE/TIME			SEALS YININ	4	ļ			
						***************************************		TACT? Y/N/	· · · · · · · · · · · · · · · · · · ·	 				
				POSAL INSTRUCT	TIOMS Pickup			GOOD CO	ND./COLD	-				
	1 TEG OF	SPOSAL	# 32.00	Lesch II watau	C Premap		NOTES:			1 3				

TURNAROUND TIME: _

Coolex rega

CHAIN-OF-CUSTODY RECORD

Dh AIREILL #: 875971945 DATE: 06/26/01 PAGE \$2 OF 2 AMEC EARTH ! ENVIRONMENTAL ADDRESS: PHONE: (508) 545- 2462 FAX: CLIENT PROJECT #: CASE # KOISH4 PROJECT MANAGER: COLLECTOR: Total Number Of Containers Laboratory Note Number Sample FIELD NOTES Sample Number | Depth | Time | Type Container Type SELO 145 STL KB042 5534 1200 KB043 RELINQUISHED BY (Signature) DATE/TIM SAMPLE RECEIPT DATE/TIME RECEIVED BY (Signature) DAYETIME LABORATORY NOTES: TOTAL NUMBER OF CONTAINERS RECEIVED BY (Signature) DATE/TIME CHAIN OF CUSTODY SEALS YININA SEALS INTACT? YININA SAMPLE DISPOSAL INSTRUCTIONS RECEIVED GOOD COND./COLD ☐ Pickup (Return NOTES: THE DISPOSAL @ \$2.00 sech

TURNAROUND TIME: _____

COTTER ORIg9

CHAIN-OF-CUSTODY RECORD

									<u>-</u>							THE	r Ambricalo.	: ४३५५	171	} ⊆
CLIENT: NW	区日	Neni	: Exiv	(ROMMENTAL	-					DATE		bul.	27	lot			PAGE	OF	<u> </u>	
ADDRESS:	_									TEG										
	545	-246	2_	EAN ((mg) 5	28-5	379	<u> </u>		_			_		lKo	В	ematheld			_
PHONE.		Casel	Polsu	FAX: ()				·	I				<u></u>					DATE OF		
CLIENT PROJE	(G) # 1)	<u> </u>								COLL	ECTO	OR:		نابد	ويتنابنا	الوائدين		DATE OF COLLECTION		
Sample Number	Oepth	Time	Sample Type	Container Type	AND TO SE						9/3 3/		3/3 8/8				FIELD NOTE	ES :	Total Number Of Containers	Laboratory Note Number
KB063	5518	1010	Solr				X					\prod								
Keoul	SSI8	1015	SOIL				X						Li							
KB065	SAIS	1018	SOIL		X															
			Soil		L X													:		
KB067		1027			X													.1		
KH068	2618	1025	SOIL		LX															
19069	HUNDS	1945	CW_				- X	<u> </u>												
12010	14193	0475	(Zqu)				×							$oxed{L}$						
-K907+-	10001	1120	SW.				- X		\prod				\Box							
		1745					X									-	•			$\overline{}$
WORL		1360					X							Ţ			LAB OC			
63075			SpiL		·		X										LAB OC.			
KBOTY	SM32	1325	Soil		M												LAB OC			
KB077			Soil	_																
KB0#82	NAME OF TAXABLE PARTY.	1605	SOIL																1	
			301L				X													
KB082			Sol																	
KB085			STIL																	
MELINOUISHED BY	Y: (Signe	lwe)	DATEM OI/197	Zo ·	O BY (Sig		DA	TE/TIME		TAL N		APLE ER OI			NERS		LABORATORY N	OTES:		
HEVINOUISHED B	Y: (Signa	uns)	DATE	IME RECEIVE	DBY (Sig	nature)	DA	TEITIME		IAIN O			*			1]			
									SE	ALS IA	ITAC	T? YA	W/NA							
				osal instruct						CEIVE	D GO	OD C	OND	/COL	.D	<u> </u>	-			
	· iro Al	COACAI	A 49.46 .	mach (7 Matture	T Blek	run.			E N/A	VEC.		-					1			

THEMADOLINID TIME.

CHAIN-OF-CUSTODY RECORD

		7	TURNA	NROUND TIM	E			·			-		•							D	th	A -	(p	BILL +	什:	87	- 59	Ho	141	·5	
CLIENT: M	HEC E	herH	: EMM	canment tal									·····	O	AŤ	E:	Ь	φl:	28		_	_		PAG		-	-				
ADDRESS:		<u>-</u>												T	EG	PR	OJI	ECT	#:										<u></u>		
PHONE: (30)	()9K	- 2462		FAX:								-		L	OC.	ATH	ON:		H	4	W	Ko	_6	Parl	FIE	A.	>	-	1	1	
CLIENT PROJE	CT # :	casc#	Ross	FAX:FAX:					PO						OLL													DATE:			
Sample Number	Depth	Time	Sample Type	Conlamer Type	N. P.											9/3	*/ */		\$ / 5 5 / 5 5 / 5						F16	ELD N	OTES	Gestalania G		Of Containers	aboratory
KB088	Whor	1050	GW						\Box	ζ.	1									ſ			Ť	Ť					Ť		
	Nrgr	1770	GW						7		Ì	1								i	†	1	T	† · · ·					十		<u> </u>
KB102	MUOT	1415	GW						7	4												T	T	1		-			十		
VB105	Qu4	1545	W																Γ	Τ		T	T	Pin	saf	7		·····	十		-
										$oxed{I}$												T	T	T		*********			十		
										Γ												1	1						7		
																					T	T	Ī						1		
																			Γ			Γ	T		****				十		
																							T						丁		
																						Γ							\neg		
				2					\perp			L									Γ		Τ	T							
		<u> </u>			L					\perp																					
						<u> </u>		_	_	_		1					L														
					<u> </u>	↓_			\bot	┵	1									<u> </u>									\prod		
			<u> </u>		1	lacksquare			_	1	\bot	1_								L											
		ļ ·			1_	ـــــ		_		1	\perp	1						_		_			L								
	<u> </u>		<u>.</u>	•	ļ	1	\sqcup	\bot	_		1	-									L	L					-		\perp		
	<u> </u>	<u> </u>	<u> </u>	INC. OFFICE	1	با	Ц	_1														L	<u> </u>	<u> </u>	-						L
FIELINGUISHED BY		98 of	DATE	IME RECEIVE	ひめや	124	renr	ej	C	ATE	ЛІМ	Ę					~	LE					_	LAE	JOR A	TOR	Y NO	TES:			
PEUNQUISHED BY		_ <u> </u>	DATE	IME PIECEIVE	D ØY	(Si	netur	e)		TAC	E/TIM	Æ	1—		LM									_							
	· · · · · · · · · · · · · · · · · · ·	-,	· · · - · ·			• •	-	-	•			_	<u> </u>		V OI						S Y/	PAVIN	4	\dashv							
		Sampl	E DISP	DSAL INSTRUCT	IOA	IS														-	011		+	-							
	SAMPLE DISPOSAL INSTRUCTIONS RE												TES									╅	 .								

Correct® leg 9
CHAIN-OF-CUSTODY RECORD

TURNAROUND TIME: Dh Alebiu#: 8759719511 &

CLIENT: AW	NEC E	THE TH	₹ €	MURTNHEN	TAL	**				1	ITE:_ G PR				10		PAGE	or1		
	(89	715-	1462	FAX:	(808) 52	18-4	379								KA	AKO	BROWNFIELL) ·		
CLIENT PROJE	CT #:_	caset	Palsi	PROJECT M	ANAGER:					1	LLEC							DATE OF O	6/2	7
Sample Number	Depth	Tima	Sample Type	Container Type	BARTA PAR						 \$} \$	S S					FIELD NO	TES I	Of Containers	Laboratory Note Number
	MW02		ew		111		X													
		1955				44	X.	-					_	<u> </u>		_			\bot	
	Mryol		CW		$\bot \bot \bot$	$\bot \bot$	X	_					\bot	-	\sqcup				_	·
	BW3	1245	W		\bot	1-1-	K] 		-	1	4_		_	Binsale			
KB078.	Missel	415	GW		 		 X 	-	-	$\vdash \vdash$	╁	$\vdash \vdash$	-	╁╌	H	-			_	
						11							\perp						1	
							$\downarrow \downarrow$									1				
					1-1-1	+	+	+	-		+	$\vdash \vdash$	\dashv	1-	\vdash	+			-	_ <u>-</u> -
			-								土		1			1				
					111		$ar{ar{\Box}}$			-			_	_						
		-	<u> </u>		+	++	╂╁	-			+	1	╁	-	H	+			╅	
						11														
	<u> </u>	ļ					++	1	<u> </u>	$\bot \bot$	4	\sqcup	_	1_	$ \cdot $	_	<u> </u>		_	
	i	 	-		╁╁┼	++	╁┪		$\vdash \vdash$	- -		$\vdash \vdash$		+-	┟╌┤	+	 		_	
RELINCUISHED BY	/ Signal	lure)	DATE	IME RECEIVE	D BY (Signs	itme)	LLL DAT	 E/TIME		<u> </u>		AMP	E RE	CEN		-	LABORATOR	NOTES-		
fun total	1	66/27		1920					1	OTAL						RS	LABORATORY	NUIED:		İ
REDINGUISHED BY	(Signal	lure)	DATE	IME RECEIVE	D BY (Signa	ikre)	DAT	E/TIME		HAIN										
		SAMPI	E DISP	OSAL INSTRUC	MONS			· · · · · · · · · · · · · · · · · · ·		EALS					OI P		_			
G				ech Return	D Pickup					OTES:					~					

CHAIN-OF-CUSTODY RECORD

		T	URNA	ROUND TIME			· · · · · · · · · · · · · · · · · · ·							4 1	L A-	ŲB	144	: :	875	,971	94	15	
CLIENT: AM	工艺	DET!	1 < 1	nvienmen	TAL					TEG	re:_0 PRC	TIEC.	Y#:							0	<u> </u>		
	1945-	2467	>	FAX:				·		LO	CATIO	DN: _	}	4	cas	Ko	BRO	WN!	151	P			<u> </u>
CHENT DOOLE	CT #.(isett	POISH	PROJECT M	ANAGER					COL	LECT	na.								COLLE	E OF	<u></u>	
Sample Number			Sample Type	_			11	\$/ 8/ 6 \$/ 8 \$ \$		//	77	7	 3 /5 8 /2					FIE	UD NO	TES		Total Number Of Containers	Laboratory
(19086)	5/22	0950	Soil							$\bot \bot$			\bot	┵	_								
	5022	100D			X	_			<u> </u>	4-4-	4-1		4-	i - ∤	_	_	┼	,-					<u> </u>
18088	ماللا	10=0	-CW-				X		 	+	-11		#	1-1	丰	丰					-		=
K8090	5502					1				11	1-1		4_		_	┿	 						├-
18092	SA02	1105			X					44	11	1	<u> </u>	\dashv	4	_	 					 	
18093	5002				X								4			_	-						▙
Kang-	MAJOR	1230	CW			<u> </u>					11		#			+	-						_
18095		1225	1				X									4	↓					<u> </u>	
KB096	SS08	1235					ΓX				44		_ _	\downarrow	1	_ _	-					-	├-
Kealt		1240			X					44					1	4	ļ						╁┷
KB098		1245							\sqcup				_			_					<u> </u>	 	
18099		1350		-			X			$\bot \bot$		\sqcup		4-4	\Box	_	 		<u> </u>			 	╂─
100		355			X		1		1_1	44		 	_	lacksquare		-	∔					├	┼-
KB101	Sea	1405			X	$oxedsymbol{oxed}$	 		igspace			-	+	$\downarrow \downarrow$	┝╼╂	4	┿						$oldsymbol{\pm}$
Ke107	MUST	1415	; <u> </u>				井	==	+=+	##	#	-	#	#_	盽	丰	+					-	F
1803	9842	1510	<u>' </u>		X	igwdown	112	- -	++			1-1	+									<u></u>	土
18603		1545				岸	 			77	=	##	+	+-	一	干	+				- 	 	+
RELINCHISHED 8	Y: (Signa	TEITIMI	E	TOTAL		AMPL RFR				RS	1	ABOR	ATOR	Y NOTE	<u>.</u> :5:	L							
MILINOUISHED B	Y: (Signa	iture)	DATE N	TIME RECEIV	ED BY (Si	Busyn, s	Di	ATEMM	E	CHAIN	OF C	USTO	DY S	EAL:					*				
				ACAL INOTALIA	TIANG		·			SEALS					יו זס:	, +	-						
1	SAMPLE DISPOSAL INSTRUCTIONS													- 10-17-14			\neg						

		ingle on	
4	eee		
. 📆	بيالنا	 •	
•			
_			

White: Return to client with report

Yellow: Laboratory Copy

Pink: Sampler

CHAIN OF CUSTODY RECORD

EPA Region 9 Laborat	ory
EPA Region 9 Laborat 137 South 46th St. B	dy 20
chrond CA 94804	ø
chrond CA 94804 PL-Inc. (510) 412-2323	
•	

																		-	0j 275-2170- 275-4422
Project Name/Number	Sampler (P	rint)				Τ			,	Anatysia	s Requ	estedil	Helhod	Numbe		-			Date Shipped: 07/02/01
KAKAAKO DEGINFIEL	D JAN	20To	HIPOX	₹		- K		\neg										1	Carrier: FEDEX Weybill No.: 8255 01283100
Purchase Order Number CASC# ROISH4	Sampler (S	fil	1-			V005		į											Comments:
Sample Identification	0	Date Collected	Time Collected	Matrix	Number of containers	3												<u>-</u>	
40821		6/28/01	1050	W	3	X													MM0P
Y0825		1	1220	W	3	X													MM08
Y0834			1415	W	3	X													MW07
Y0837		1	1545	W	3	X													QW4
	LAST	ENT	ev	_															
		-	1																
	-																		
			1																
					1													_	
Shuttle Temperature:	· ·	Tumarou	and Requ	ested:	·					·	L		Samp	le Disp	osal:				
		C) Stat	ndard (24			One w	eek [-48 ha				DF	Relum I					ab (30-day returbion)
Relinquished by sampler:		Date 07/02/o		4	lved by:				Relinq	bertain	by:				D	ate	Tin	æ	Received by:
Relinquished by:		Date			ived by:		-		Relinq	ulshed	by:				D	ale	The	ne	Received at lab by:
Report to:	•	<u>L</u>	<u> </u>					L		Bill to:			√		<u> </u>				I <u></u>
	•																-		
	•								į										•
Dhonad.		EAVA.				-				1									•

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX LABORATORY 1337 S. 46TH STREET BLDG. 201 RICHMOND. CA 94804-4698

JUL 2 0 2001

MEMORANDUM

SUBJECT:

Case R01S44

Results for Volatile Organic Compounds Analysis

FROM:

Brenda Bettencourt, Director

EPA Region 9 Laboratory (PMD-2)

TO:

Tom Mix, Special Assistant for Superfund

Superfund Office (SFD-1)

Attached are the report narrative and results spreadsheet from analysis of samples from the Kaka'ako Brownfields project. These data have been reviewed in accordance with EPA Region 9 Laboratory policy. Summary information for the data included in this report is as follows:

SITE/PROJECT:

Kaka'ako Brownfields

CASE:

R01S44

LABORATORY:

U. S. EPA Region 9 Laboratory

SAMPLE DELIVERY GROUP(S): 01184A

ANALYSIS:

Volatile Organic Compounds (EPA method 524.2)

A full documentation package for these data, including raw data and sample custody documentation, has been prepared and is on file at the Region 9 Laboratory. Please contact Vance Fong of the Quality Assurance Program (PMD-3) to request further review and/or validation of the data.

If you have any questions please contact Rich Bauer at (510) 412-2312, or Ken Hendrix at (510) 412-2321.

ATTACHMENT: Analytical Report

USEPA REGION 9 LABORATORY REPORT NARRATIVE

CASE NUMBER:

R01S44

SAMPLE DELIVERY GROUP:

01184A

PROGRAM:

Superfund

DOCUMENT CONTROL #:

B0101024-0323

ANALYSIS PERFORMED:

524.2

DATE:

July 13, 2001

SAMPLE NUMBERS:

Client	Laboratory
Sample No.	Sample ID
Y0821	AB31840
Y0825	AB31841
Y0834	AB31842
Y0837	AB31843

GENERAL COMMENTS

Four (4) water samples from the Kaka'ako Brownfields Superfund site were received at the EPA Region 9 Laboratory on 07/03/01

These samples were analyzed for volatile organics in accordance with the USEPA Region 9 Laboratory SOP 354, Volatile Organic Analysis (Reference Method 524.2).

SAMPLE RECEIPT AND PRESERVATION

No shipping or preservation issues were encountered with these samples. Air bubbles were observed in all VOA vials.

QA/QC AND ANALYTICAL COMMENTS

The following comments appear on the Summary of Analytical Results:

- A Results detected at concentrations below the quantitation limit (QL) but greater than or equal to one-half the QL are reported with a "J" flag to indicate the uncertainty of quantitation at these levels.
- B The reported values for the QC sample (Y0821, AB31840) should be considered estimates because QC limits were exceeded in the matrix spike /matrix spike duplicate sample for the following compounds. Matrix effects may be present in samples of similar composition to the spiked sample.

Sample ID	Laboratory Sample ID	Analyte	MS %Rec	MSD % Rec	QC Limit
Y0821	AB31840	1,2-Dichloro3-chloropropane	. 66	72	70-130

C The QC limits (50 - 150 % recovery) were exceeded in the Quantitation Limit Standard (QLS) for the following compound. Since the value is biased low, the reported values should be considered as estimates.

Filename	Instrument	Date	Analyte	%Recovery	QC Limit
QWH0705	HP5973H	07/05/01	Bromoform	34	50 - 150

No target analytes were detected in the method blanks associated with these samples.

No target analytes were detected in the storage blank associated with these samples.

All surrogate recoveries were within QC limits.

All MS/MSD results were within QC limits except as stated in comment B.

All internal standard areas and retention times were within QC limits.

All LCS results were within QC limits.

All samples were analyzed within the holding time of 14 days.

RESULTS SUMMARY

The results can be found on the Summary of Results report.

Any questions in reference to this data package may be addressed to Nicholas Kish at (510) 412-2375.

Glossary

Method Blanks

A laboratory method blank is laboratory reagent water or sand with all reagents, surrogates, and internal standards added and carried through the same sample preparation and analytical procedures as the field samples. The laboratory method blank is used to determine the level of contamination introduced by the laboratory during analysis.

Storage Blanks

A storage blank is laboratory reagent water that is stored in the laboratory refrigerator for one week. All reagents, surrogates, and internal standards are added at the time of analysis and it is processed through the same sample preparation and analytical procedures as the other blanks. The storage blank is used to determine the level of contamination introduced by the laboratory during sample storage.

Surrogates

Surrogates are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. All samples are spiked with surrogate compounds prior to analysis. Surrogate percent recovery (%R) provides information about both the laboratory performance on individual samples and the possible effects of the sample matrix on the analytical results.

Matrix Spike and Spike Duplicate Analysis

Matrix spike sample and spike duplicate analyses provide information about the effect of the sample matrix on sample preparation and measurement. Poor percent recovery (%R) results and large relative percent difference (RPD) between duplicates may indicate inconsistent laboratory technique, sample nonhomogeneity in soils, or matrix effects which may interfere with analysis.

Internal Standards

Internal standards are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but not normally found in environmental samples. All samples are spiked with internal standard compounds prior to analysis. Internal standard recoveries and retention times provide information about both the instrument performance on individual samples and the possible effects of the sample matrix on the analytical results.

Laboratory Control Samples

Laboratory control samples (LCSs) are analyzed daily to demonstrate comparability of the continuing calibration standard. It is equivalent to the continuing calibration standard, but it is obtained from an independent source.

EPA REGION 9 - LABORATORY - RICHMOND, CA SUMMARY OF ANALYTICAL RESULTS

Case Number: R01S44

Site: Kaka'akoBrownfields

Analysis: Matrix:

524.2

Water

SDG: 01184A Date: 07/13/01

Sample No. Sample ID	. NA Y082	1		N/ Y08			NA Y08				NA 0837			od Blai WH0705	
Lab Sample ID	AB318	40		AB31	841		AB31	842		AB	31843		ŀ	NA	
Date of Collection	06/28/	01		06/28	3/01	•	06/28	3/01			28/01			NA	
Units	ug/L			ug/L	_	_	ug/L	_		ug/L	_		ug/L	_	_
Analyte Dichlorodifluoromethane	Result 1 U		Cmt_	Result U	Q	Cmt	Result U	Q	Cmt	Result	U Q	Cmt	Result	U Q	Cmt
Chloromethane	1 U	1		1 0			1 U		4	1	U		1	U	
Vinyl chloride	0.5 U			0.5 U			0,5 · U			0,5	U	55055675216	0.5	U	
Bromomethane	i U			11 U			I U			· 1	U	3.50	1.	U	
Chloroethane	1 U			l U			เ บ			1	บ		· 1	U	
Trichlorofluoromethane	1 U	THE WAY AND AND		1 U			1 U			1	Ü	to the second	see I	U,	
1,1-Dichloroethene	1 U	II	W-000 () ()	l U		***************************************	1 U			1	U	BBBBBBB 12202.7	1	U	
Methylene chloride	1 U	200000000000000000000000000000000000000		1 U		100	1 U				U .			U	
trans-1,2-Dichloroethene Methyl t-butyl ether (MTBE)	1 U			1 U	+		1 U			1	U _		1	Ü	
1,1-Dichloroethane	1 U	, 10000000000 1000		1 U	***	1.0000000000000000000000000000000000000	· 1 U	Total Processing	1700	1	U		1	U	
2,2-Dichloropropane	1 = U	4		ı Ü			1 U			1	U		1	U	
cis-1,2-Dichloroethene	1 U			I U			l U	* 100 ALM 1		I	U		l	U	
Bromochloromethane	1 1 U		-10	l U			l U			1	U		· 1	U	
Chloroform	1 U			1 U			1 U	-		1	U		1	U	
1,1,1-Trichloroethane	i U	1		1 U			.1' U		1 1 2 2	1	U		1	U	
1,1-Dichloropropene Benzene	1 U	1		1 U			1 U	_		1	U	***************************************	1	U "U	
1,2-Dichloroethane	1 U 0.5 U			0.5 U	-	-	1 U			1- 0.5	บ บ		0.5	יט ט	
Carbon tetrachloride	0.5 U			0.5 U			0.5 U			0.5	U		0.5	U U	
Trichloroethene	1 U	******	944900000	1 U	3		I U	ri recessors	100000000000000000000000000000000000000	1	U		I	U	
1,2-Dichloropropane	I U			1 . ⊍			1 U			15.66	U		1	U	
Dibromomethane	į · U			l U			1 <u>U</u>			1	U		1	U	
Bromodichloromethane	l U			1 U			≥ 1 ±U			- I	U		i	· U	
cis-1,3-Dichloropropene	0;5 U			0.5 U			0.5 U	-		0.5	U		0.5	U	
trans-1,3-Dichloropropene	0:5 U			0:5*, *U	-		0.5. U				U .		0.5	U	
Toluene	1 U	7,	i 42	1 U			1 U	-1			ប		1	U	
Tetrachloroethene	' I U			1 U			1 U			1	U	SCHOOL CHREE	1	U	
1,3-Dichloropropane	1 U			ı U	-		1 U		7.5	1	U		1	U	
Dibromochloromethane	1 U			1 U			ı U			1	υ		ı	U	
1,2-Dibromoethane (EDB)	l U			∵1. U	1 1000000000000000000000000000000000000	11.5	I U	-		1	U		1	~U ,	
Chlorobenzene	1 U	20400.00	200.0	l U		W 8000000	1 U		Phones repr	0.5	J.	Α	1	ט	c discontinue
Ethylbenzene	1 U U			l U	A COMMON TO		1 U	- In connect	3000.00		U U		1	U	
m & p-Xylene	- 1 U			1 0			1. U			l Î	U ·	-	1	U 'U'	
o-Xylene	ı U			1 U		320000000000	1 U			1	U		1	U	
Styrene	l U	,		. ⊒1 U			I U			1	U		1	U	
Bromoform	l U	J	С	1 U	J	С	1 U		С	1	U J	С	1	U J	С
Isopropylbenzene	1 U			il U	770000101		1 U	-		Market M. M. C. W. C.	U		1	U.	
Bromobenzene	1 U	- GREEN A	C-97-d	1 U			1 U		12860 v 40	1	U		1	U	
1,2,3-Trichloropropane	1 U	A marie	MACH	1 U		127,40,000	% • 1 ° 2 ° U	-	Miller ()	1	U N		. 1 . 1	U. U	***
n-Propylbenzene	l Ü	100.00 C	galan T. a :	1 U			1 U			eril.	U S		1	ש	1000
2-Chlorotoluene	1 U	p to 2.1 b4 de."	0.000	1 U		4 12 KI	1 U	-	10077513-8	APPROVE 1 1.2.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U	Sui (1903)	1	U	
4-Chlorotoluene	i i u	lina i	5 V.		35,4		i U	+	4.	1.0407490		A ()	* 1	Ŭ	
1,3,5-Trimethylbenzene .	1 U			l U			1 U				U		1	U	
tert-Butylbenzene		A.	Sitt	l U	1,000	111	1 U	-	1.0	1				U	
1,2,4-Trimethylbenzene	l U	· · · · · ·	*CONTRACT	1 U	+	3847 (See 612)	1 U		19-11- 20		U	eastern 27	1	U	
sec-Butylbenzene	1 U	* < 5		1 U	P	2.20	l . ⊌U I U		DAY W	1	U U		1 1 1	บ	
1,4-Dichlorobenzene	1 U			i U	Me		1 U	-			U .	***	1		
p-Isopropyltoluene	l . U			l U	1	, week (1996)	l U				U		1	U	
1,2-Dichlorobenzene	i U			I. U	14		≱l ∵, U	1787		1	U		ĵ	U	
n- Butylbenzene	1 U			1 U	_		1 <u>U</u>				U	Margin .	1	U	
1,2-Dibromo-3-chloropropane		J	В	2 U	_		2 U	-			Ū 🐧	100		U	+
1,2,4-Trichlorobenzene Hèxachlorobutadiene	1 U	100000	Mic.	l U			1 U	_			U X		1	U	
Naphthalene	1 U	revest N	54.686.65	1 U		38.P\$P\$X3	0.7	J	A	FRANK MASET ACT V.	U	an ordered	1	U	
1,2,3-Trichlorobenzene		1	6 mil			7 18 4	U I	-	_	-jj		N. Jak		.U	
O-Laboratory Data Qualifiers	,			I-The amount	(Augo) a		17. 400000	1			- 100 9 575 . 183	MIXTEE		= ×1000000	process assessed

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

MASTER FILE: voa_h2oc.wk4, version 1.0, 04/04/00, Lotus 123 Release 5

EPA REGION 9 - LABORATORY - RICHMOND, CA SUMMARY OF ANALYTICAL RESULTS

Case Number: R01S44

Site: Kaka'akoBrownfields

SDG: 01184A Date: 07/13/01 Analysis: 524.2 Matrix: Water

Sample No. Sample ID	Storge H SBH0	705		Qua	antitation Limit	
Lab Sample ID	VHBLK				NA	
Date of Collection	06/29/	01			NA	
Units	ug/L	_		ug/L	_	<u>.</u>
Analyte Dichlorodifluoromethane	Result U	Q	Cmt	Result	· · · · · · · · · · · · · · · ·	Cm
Chloromethane	1 0			, 1°		
Vinyl chloride	0.5 U		B. 25986	0.5		
Bromomethane	1U	_		- 1		
Chloroethane	1 U	e common		1	971.71. 574444	-
Trichlorofluoromethane	. 16 ± U			- 1		
1,1-Dichloroethene	l U		-	l		
Methylene chloride 😿	1 U	200		i l		
trans-1,2-Dichloroethene	l U			l		
Methyl t-butyl ether (MTBE)	1 U			- 1		
1,1-Dichloroethane	1 U	_		1		
2,2-Dichloropropane	l € U	- code top		Ø I	•	
cis-1,2-Dichloroethene	1 U		200000000000000000000000000000000000000	1		
Bromochloromethane	-ì U	-		i I		
Chloroform	1 U			1		
1,1,1-Trichloroethane 1,1-Dichloropropene	i U	THE PROPERTY.		1		
Benzene	1 U		710	1		
1,2-Dichloroethane	0.5 U			0.5		
Carbon tetrachloride	0.5 U		S. S. S. S.	0.5		
Trichloroethene	1 U			1		lac sup
1,2-Dichloropropane	1 U			1		
Dibromomethane	ı U	81 20000000		1		13000
Bromodichloromethane	4 I U			1		
cis-1,3-Dichloropropene	0.5 U			0.5		
trans-1,3-Dichloropropene	0.5 ∪		+i	0.5		
1,1,2-Trichloroethane	1 U			1		
Toluene	ı U	2 22 7 7 7 7	-13	1		
Tetrachloroethene	ำ เบ		MOTOR DE LOS	1		4 20000000
1,3-Dichloropropane	1 U			1		
Dibromochloromethane 1,2-Dibromoethane (EDB)	1 U		0.000	1		
Chlorobenzene	u ا 1 .U			1 l	-	
1,1,1,2-Tetrachloroethane	i U			- I		
Ethylbenzene	l U			1		0.2708
m & p-Xylene	i U			ı		
o-Xylene	l U			1		Manage
Styrene	ıl U		-	1		
Bromoform	1 U	0 3000000	С	1		1
Isopropylbenzene	l U			7.7 1	37 30	
Bromobenzene	1 U			l		
1,1,2,2-Tetrachloroethane	l U			1	4	99,0
1,2,3-Trichloropropane	1 U			1		
n-Propylbenzene	the law of the second and the	98 . 890		100000000000000000000000000000000000000		100
2-Chlorotoluene	l U		1010108010.	1	- 4 is made - 2 3 2 2 2 2	
	al al suu		2	La V	vate. Itali	(411)
1,3,5-Trimethylbenzene	1 U		***************************************	1		. 16 20 38
ert-Butylbenzene	i U			000000A 156WA	441	Viii
1,2,4-Trimethylbenzene	1 U	+ +		1 5.5e1%	×0×8	1.00000
1,3-Dichlorobenzene	1 U	3 14~	A . 2. 80 .	1		Lasani.
1,4-Dichlorobenzene	1 U	S. Later	Angelou in		10 Sec. 10	10.027
p-Isopropyltoluene	1 U	_	2000/F0-18	1	**************************************	1999
	i vi		iggs)te	. i		20.00
,	. 1 U		********	1	3386-77	1.0000000
n- Butvibenzene				2.	- 46	7.3
n- Butylbenzene	2* U	, S		- Z3W	2 1	
n- Butylbenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	1 U	-		1 .		- xin/8
1,2-Dibromo-3-chloropropane	1 U			. , ,		23400
1,2,4-Trichlorobenzene	1 U			1 .		3)747

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

MASTER FILE: voa_h2oc.wk4, version 1.0, 04/04/00, Lotus 123 Release 5

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX LABORATORY **1337 S. 46TH STREET BLDG. 201 RICHMOND, CA 94804-4698**

SEP 4 2001

MEMORANDUM

SUBJECT:

Case R01S44

Results for Diesel and Motor Oil Range Organics Analyses

FROM:

Brenda Bettencourt, Director Kaskership for

EPA Region 9 Laboratory (PMD-2)

TO:

Tom Mix, Special Assistant for Superfund

Superfund Office (SFD-1)

Attached are the report narrative and results spreadsheet from analysis of samples from the Kaka'ako Brownfields project. These data have been reviewed in accordance with EPA Region 9 Laboratory policy. Summary information for the data included in this report is as follows:

SITE/PROJECT:

Kaka'ako Brownfields

CASE:

R01S44

LABORATORY:

U. S. EPA Region 9 Laboratory

SAMPLE DELIVERY GROUP(S): 01177A, 01179D

ANALYSIS:

TPH-Diesel and Motor Oil Range Organics (EPA

method 8015B)

A full documentation package for these data, including raw data and sample custody documentation, has been prepared and is on file at the Region 9 Laboratory. Please contact Vance Fong of the Quality Assurance Program (PMD-3) to request further review and/or validation of the data.

If you have any questions please contact Rich Bauer at (510) 412-2312, or Ken Hendrix at (510) 412-2321.

ATTACHMENT: Analytical Reports

USEPA REGION 9 LABORATORY REPORT NARRATIVE

CASE NUMBER:

SAMPLE DELIVERY GROUP (SDG):

PROGRAM:

DATE:

DOCUMENT CONTROL #:

ANALYSIS PERFORMED:

R01S44 01179D

Superfund

B0101024-0420

Total Petroleum Hydrocarbons-Diesel

Range Organics (TPH-DRO)

August 15, 2001

SAMPLE NUMBERS:

Client <u>Sample No</u> .	Laboratory <u>Sample ID</u>	Client <u>Sample No.</u>	Laboratory <u>Sample ID</u>
KB064	AB31805	KB095	AB31824
KB075	AB31806	KB096	AB31825
KB083	AB31807	KB099	AB31826
KB090	AB31823		

GENERAL COMMENTS

Seven (7) soil samples were received at the EPA Region 9 Laboratory on 06/28/01 and 06/29/01. from the Kaka'ako Brownfields site for determination of TPH-DRO.

These samples were analyzed for TPH-DRO in accordance with the Region 9 Laboratory SOP 385, Extractable Petroleum Hydrocarbons by GC FID based on EPA SW-846 Method 8015B, Nonhalogenated Organics Using GC/FID, Revision 2, December 1996 and Region 9 Laboratory SOP 275, Extraction of Petroleum Hydrocarbons from Water Using Continuous Liquid-Liquid Extraction based on EPA SW-846 Method 3520C, Continuous Liquid-Liquid Extraction, Revision 3, December 1996.

These samples turned out to be primarily contaminated with oil range components; the sample chromatograms do not display any discernable diesel hydrocarbon pattern. The oil range components in these samples contribute to the diesel range quantitation area, interfering with accurate quantitation of diesel range organics. Therefore, results are reported as "TPH as Motor Oil".

Soil sample results are reported on a dry-weight basis.

SAMPLE RECEIPT AND PRESERVATION

No shipping or preservation issues were encountered with these samples.

QA/QC AND ANALYTICAL COMMENTS

The following comments appear on the Summary of Analytical Results:

A. The samples listed below were extracted beyond holding time. Detected results and quantitation limits for the samples listed below are estimated and "J" flagged.

Sample ID	Lab ID	Date Collected	Holding Time Date	Date Extracted	Days Beyond
KB064	AB31805	06/27/01	07/11/01	07/26/01	15
KB075	AB31806	06/27/01	07/11/01	07/26/01	15
KB083	AB31807	06/27/01	07/11/01	07/26/01	15

B. The RPD and % recovery of the LFM/LFMD spiking compounds listed below do not meet the QC limits. Result and quantitation limit for the analyte listed below in the QC sample is estimated and "J" flagged.

Sample ID	Lab ID	Analyte	LFM %Rec	LFMD % Rec	QC Limit	RPD	QC Limit
KB075	AB31806	Diesel	30	19	70 - 130	.47	15
KB090	AB31823	Diesel	46	48	70 - 130	4	15

Note: Some oil range components present in the matrix spike sample elute in the diesel range interfering with quantitation of diesel range hydrocarbons. Small variations in oil content in subsamples taken for LFM/LFMD samples from the matrix spike sample can have a significant impact on diesel range spike recoveries.

C. The accuracy of the LFB spiking compound listed below does not meet the QC limits. Detected results for the analyte listed below in the samples and LRB extracted with the LFB listed below are estimated and "J" flagged.

LFB Filename	Date Analyzed	Compound	% Rec	QC Limit
214F007	08/02/01	Diesel	60	70 - 130

D. The surrogate recoveries for the samples listed below do not meet QC limits. Detected result for the analyte in the samples are estimated and "J" flagged.

Sample ID	Lab ID	Surrogate	% Rec	QC Limit
KB064	AB31805	n-Hexacosane	64	70 - 130
KB083	AB31807	n-Hexacosane	63	70 - 130

Additionally, the following QC results are associated with the sample(s) in this SDG:

QC limits were met for all initial calibrations, CVs, QCS percent differences, QLS percent differences, LFB percent recoveries and surrogate recoveries, except as noted above.

All samples were analyzed within the 40 day extract holding time.

No target analytes were detected in the LRB associated with these samples.

Any questions in reference to this data package may be addressed to Nick Kish at (510) 412-2375.

GLOSSARY

Initial Calibration

The initial calibration demonstrates that the instrument has a linear calibration curve described by percent relative standard deviation (%RSD). The average calibration factors (CFs) determined in the initial calibration are used to quantitate analytes and surrogates.

Quality Control Standard (QCS)

The quality control standard is a mid-point calibration standard prepared from a source different than the calibration standards. The QCS is used to check the accuracy of the initial calibration standards.

Calibration Verification (CV)

The calibration verification checks the instrument performance daily by ensuring the instrument continues to meet the linear calibration curve as demonstrated by percent difference (%D).

Quantitation Limit Standard (QLS)

The quantitation limit standard is used to demonstrate low level quantitation performance for all target compounds.

Laboratory Reagent Blanks (LRBs)

A laboratory reagent blank is laboratory reagent water or baked sand with all reagents, surrogates, and internal standards added and carried through the same sample preparation and analytical procedures as the field samples. The LRB is used to determine the level of contamination introduced by the laboratory during extraction and analysis.

Surrogates

Surrogates are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. All samples are spiked with surrogate compounds prior to extraction. Surrogate percent recovery (%R) provides information about both the laboratory performance on individual samples and the possible effects of the sample matrix on the analytical results.

Laboratory Fortified Sample Matrix and Duplicate (LFM and LFMD) Analysis

Laboratory fortified sample matrix and duplicate analyses provide information about the effect of the sample matrix on sample preparation and measurement. Poor percent recovery (%R) results and large relative percent difference (RPD) between duplicates may indicate inconsistent laboratory technique, sample nonhomogeneity in soils, or matrix effects which may interfere with analysis.

Laboratory Fortified Blank (LFB) Analysis

A laboratory fortified blank is laboratory reagent water or baked sand with all reagents, surrogates, internal standards and representative target compounds added and carried through the same sample preparation and analytical procedures as the field samples. The LFB analyses provide information about the laboratory and method performance. Poor percent recovery (%R) results may indicate poor laboratory technique or poor method performance for a particular class of compounds.

Suffixes to Sample ID and Lab ID

The following suffixes may be attached to sample ID's and lab ID's to distinguish between different extraction samples or analytical runs: RE for reextraction, RA for reanalysis, and DL for dilution analysis.

EPA REGION 9 LABORATORY-RICHMOND, CA SUMMARY OF ANALYTICAL RESULTS

Case Number: R01S44

Site: Kaka' ako Brownfields

Analysis:

TPH-DRO/OIL-RANGE

Matrix:

Soil

SDG: 01179D Date: 08/15/01

Sample No.	T					Т						T	_			
Sample 1.D.	KB064				KB075				KB083				KB090			
Lab Sample ID	AB31805				AB31806				AB31807			i 1	AB31823			
Date of Collection	06/27/01				06/27/01			i 1	06/27/01				06/28/01			
% Solids	99				93				84			1	85			
Units	mg/Kg		1		mg/Kg	1			mg/Kg			1 1	mg/Kg			i
Analyte	Result		Q	Com	Result	.]	Q	Com	Result		Q	Com	Result		Q	Com
TPH-Diesel Range	50	U			50	U			_ 50	U			6	U	<u></u>	$oxed{oxed}$
TPH as Motor Oil	430		J	ACD	770		J	ABC	64		J	ACD	760		J	В

Sample No.						7				T			NA			
Sample I.D.	KB095	-			KB096				KB099			1	Method Blank	ł		
Lab Sample ID	AB31824				AB31825				AB31826				TBLK183			
Date of Collection	06/28/01				06/28/01				06/28/01				NA.			İ
% Solids	90			1	87				84							
Units	mg/Kg				mg/Kg	ŀ			mg/Kg				mg/Kg			
Analyte	Result		Q	Com	Result		Q	Com	Result		Q	Com	Result		Q	Com
TPH-Diesel Range	50	U			6	U			_ 6	U			5	Ü		
TPH as Motor Oil	900				170				610				10	U		

Sample No.	NA				
Sample I.D.	Method Blank				Quantitation Limit
Lab Sample ID	TBLK207		į		
Date of Collection	NA				
% Solids					
Units	mg/Kg				mg/Kg
Analyte	Result		Q	Com	Result
TPH-Diesel Range	5	Ŭ			5'
TPH as Motor Oil	10	U			10

Sample chromatogram does not displayed any discernable diesel hydrocarbon pattern.

NOTES, The results are reported dry weight corrected.

Com - Comments refer to the corresponding section in the report narrative for each letter.

Q - Refer to data qualifiers:

U - The analyte was analyzed for but not detected. The associated value is the sample quantitation limit, adjusted for dilution, if any.

J - The associated value is an estimated quantity.

USEPA REGION 9 LABORATORY REPORT NARRATIVE

CASE NUMBER:

SAMPLE DELIVERY GROUP (SDG):

PROGRAM:

DOCUMENT CONTROL #:

ANALYSIS PERFORMED:

B0101024-0404 **Total Petroleum Hydrocarbons-Diesel**

Range Organics (TPH-DRO)

DATE:

August 13 2001

R01S44

01177A

Superfund

SAMPLE NUMBERS:

Client <u>Sample No</u> .	Laboratory <u>Sample ID</u>	Client <u>Sample No.</u>	Laboratory <u>Sample ID</u>
KB001	AB31726	KB035	AB31749
KB006	AB31727	KB036	AB31750
KB010	AB31728	KB040	AB31751
KB015	AB31729	KB042	AB31752
KB016	AB31730	KB043	AB31753
KB021	AB31744	KB046	AB31754
KB024	AB31745	KB050	AB31755
KB028	AB31746	KB055	AB31756
KB029	AB31747	KB058	AB31757
KB033	AB31748	KB063	AB31804

GENERAL COMMENTS

Twenty (20) soil samples were received at the EPA Region 9 Laboratory on 06/26/01, 06/27/01, and 06/28/01 from the Kaka'ako Brownfields site for determination of TPH-DRO.

These samples were analyzed for TPH-DRO in accordance with the Region 9 Laboratory SOP 385, Extractable Petroleum Hydrocarbons by GC FID based on EPA SW-846 Method 8015B, Nonhalogenated Organics Using GC/FID, Revision 2, December 1996 and Region 9 Laboratory SOP 275, Extraction of Petroleum Hydrocarbons from Water Using Continuous Liquid-Liquid Extraction based on EPA SW-846 Method 3520C, Continuous Liquid-Liquid Extraction, Revision 3, December 1996.

Soil sample results are reported on a dry-weight basis.

SAMPLE RECEIPT AND PRESERVATION

No shipping or preservation issues were encountered with these samples.

QA/QC AND ANALYTICAL COMMENTS

The following comments appear on the Summary of Analytical Results:

A. The sample listed below was extracted beyond holding time. Detected results and quantitation limits for the sample listed below are estimated and "J" flagged.

Sample ID	Lab ID	Date Collected	Holding Time Date	Date Extracted	Days Beyond
KB063	AB31804	06/27/01	07/11/01	07/26/01	15

- B. Results detected at concentrations below the quantitation limit (QL) but greater than or equal to one half the QL are reported with a "J" flag to indicate the uncertainty of quantitation at these levels.
- C. The accuracy of the LFB spiking compound listed below does not meet the QC limits. Detected results for the analyte listed below in samples and LRB extracted with the LFB listed below is estimated and "J" flagged.

LFB Filename	Date Analyzed	Compound	% Rec	QC Limit
214F007	08/02/01	Diesel	60	70 - 130

D. The surrogate recoveries for the samples listed below do not meet QC limits. Detected results for the samples listed below are estimated and "J" flagged. Quantitation limits for the samples listed below with low surrogate recoveries are estimated and "J" flagged.

Sample ID	Lab ID	Surrogate	% Rec	QC Limit
KB043	AB31753	n-Hexacosane	58	70 - 130
KB058	AB31757	n-Hexacosane	62	70 - 130

- E. The sample contains material in the diesel range that does not resemble the chromatographic pattern of diesel.
- F. The sample contains material in the diesel range that has a discernable hydrocarbon pattern which resembles the chromatographic pattern of diesel.

Additionally, the following QC results are associated with the samples in this SDG:

QC limits were met for all initial calibration, CVs, QCS percent differences, QLS percent differences, LFB percent recoveries, surrogate recoveries, except as noted above.

All samples were analyzed within the 40 day extract holding time.

No target analytes were detected above the quantitation limit in the LRBs associated with these samples.

Any questions in reference to this data package may be addressed to Nick Kish at (510) 412-2375.

GLOSSARY

Initial Calibration

The initial calibration demonstrates that the instrument has a linear calibration curve described by percent relative standard deviation (%RSD). The average calibration factors (CFs) determined in the initial calibration are used to quantitate analytes and surrogates.

Quality Control Standard (QCS)

The quality control standard is a mid-point calibration standard prepared from a source different than the calibration standards. The QCS is used to check the accuracy of the initial calibration standards.

Calibration Verification (CV)

The calibration verification checks the instrument performance daily by ensuring the instrument continues to meet the linear calibration curve as demonstrated by percent difference (%D).

Quantitation Limit Standard (QLS)

The quantitation limit standard is used to demonstrate low level quantitation performance for all target compounds.

Laboratory Reagent Blanks (LRBs)

A laboratory reagent blank is laboratory reagent water or baked sand with all reagents, surrogates, and internal standards added and carried through the same sample preparation and analytical procedures as the field samples. The LRB is used to determine the level of contamination introduced by the laboratory during extraction and analysis.

Surrogates

Surrogates are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. All samples are spiked with surrogate compounds prior to extraction. Surrogate percent recovery (%R) provides information about both the laboratory performance on individual samples and the possible effects of the sample matrix on the analytical results.

Laboratory Fortified Sample Matrix and Duplicate (LFM and LFMD) Analysis

Laboratory fortified sample matrix and duplicate analyses provide information about the effect of the sample matrix on sample preparation and measurement. Poor percent recovery (%R) results and large relative percent difference (RPD) between duplicates may indicate inconsistent laboratory technique, sample nonhomogeneity in soils, or matrix effects which may interfere with analysis.

Laboratory Fortified Blank (LFB) Analysis

A laboratory fortified blank is laboratory reagent water or baked sand with all reagents, surrogates, internal standards and representative target compounds added and carried through the same sample preparation and analytical procedures as the field samples. The LFB analyses provide information about the laboratory and method performance. Poor percent recovery (%R) results may indicate poor laboratory technique or poor method performance for a particular class of compounds.

Suffixes to Sample ID and Lab ID

The following suffixes may be attached to sample ID's and lab ID's to distinguish between different extraction samples or analytical runs: RE for reextraction, RA for reanalysis, and DL for dilution analysis.

Case Number: R01S44

Site: Kaka' ako Brownfieled

SDG: 01177A Date: 08/13/01 Analysis:

TPH-DRO/OIL-RANGE

Matrix:

Soil

pate.																
Sample No.	_		Ī	ГП		1 7							/ -			
Sample I.D.	KB001				KB006	-			KB010			١.	KB015	1		
Lab Sample ID	AB31726	- 1	ļ		. AB31727	- 1		1 1	AB31728	1	\	1	AB31729	1 1		1
Date of Collection	06/25/01	i			06/25/01		١.		06/25/01				06/25/01			ļ
% Solids	83		ļ		87			1	91				83			
Units	mg/Kg	•	İ		mg/Kg			1 1	mg/Kg				mg/Kg	1		
Analyte	Result	-	Q	Com	Result		Q	Com	Result		Q	Com	Result	لــــــــــــــــــــــــــــــــــــــ	Q	Com
TPH-Diesel Range	100	U			6	U			6	U		l	5		J	BF
TPH-Oil Range	7,600				440				240				340			

Sample No.	_		\Box							,		_			
Sample I.D.	KB016		- 1	KB021	}			KB024	1.		i	KB028			
Lab Sample ID	AB31730	1 1	- 1	AB31744	1	٠ .	1	AB31745	1	1	ì	AB31746	ì	1	1 1
Date of Collection	06/25/01	1 1		06/26/01	ł			06/26/01				06/26/01	ì		1 1
% Solids	88			93				. 86				84		l	
Units	mg/Kg			mg/Kg				mg/Kg	1			mg/Kg			
Analyte	Result		Com	Result		Q.	Com	Result		Q	Com	Result	1	Q	Com
TPH-Diesel Range	8		F	-5	U	L		90			E	6	U.		•
TPH-Oil Range	200		T	60				600				120		<u>L.</u>	

Sample No.	T		i			I										
Sample I.D.	KB029				KB033				KB035				KB036		l	
Lab Sample ID	AB31747	1	\	'	AB31748	l			AB31749	1	ì		AB31750]		
Date of Collection	06/26/01	1	İ		06/26/01			İ	06/26/01				06/26/01			
% Solids	87			1	86				89				89	l		
Units	mg/Kg			١. ١	mg/Kg	1			mg/Kg				mg/Kg			
Analyte	Result		Q	Com	Result		Q	Com	Result		Q	Com	Result		Q	Com
TPH-Diesel Range	60	U			120_			E	60	U	ļ	I	60	U		
TPH-Oil Range	700				90				600				500			1

Sample No.										1			_	T		
Sample I.D.	KB040				KB042	1	١.		KB043	i l			KB046	-	Į	ļ.
Lab Sample ID	AB31751	1	\	1	AB31752	1	1	[AB31753	1			AB31754		ŀ	
Date of Collection	06/26/01	j			06/26/01				06/26/01	1			06/26/01			
% Solids	73	l			87				87			1	87	1		
Units .	mg/Kg				mg/Kg				mg/Kg				mg/Kg	1		
Analyte	. Result		Q	Com	Result		Q	Com	Result		Q	Com	Result	_	Q	Com
TPH-Diesel Range	7	U			6	U			6	U	J	D	140			E
TPH-Oil Range	30				50				400		J	D	300			

Sample No.	·	T			_		[_							
Sample I.D.	KB050	ı			KB055	1	l		KB058	Į.	Į .		KB063 ·	1	ļ	,
Lab Sample ID	AB31755	1)] [AB31756	1			AB31757			1	AB31804	1		1 1
Date of Collection	06/26/01			i	06/26/01			1	06/26/01			i l	06/27/01	1		
% Solids	87		1		82	1 .			83	İ			99	İ		1
Units	mg/Kg				mg/Kg	1	١٠		mg/Kg		ì		mg/Kg	١.	1	1
Analyte	Result		Q	Com	Result		Q.	Com	Result	•	Q	Com	Result	ļ	Q	Com
TPH-Diesel Range	60	U			60	U			6	U	J	D	50_	U	J	AC
TPH-Oil Range	1,100			Τ	900				510		J	a	400		J	AC

Sample No.	NA				NA				
Sample I.D.	Method Blank	-	l		Method Blank		ļ.		Quantitation Limit
Lab Sample ID	TBLK179	l			TBLK207				
Date of Collection	NA.		1		NA ·	ł			
% Solids							ľ		
Units	. mg/Kg	1			mg/Kg				mg/Kg
Analyte	Result	1	Q	Com	Result '	ļ	Q	Com	Result
TPH-Diesel Range	5	U			5	U			5
TPH-Oil Range	7	1	J	В	10	U			10

NOTES: The results are reported dry weight corrected.

Com - Comments refer to the corresponding section in the report narrative for each letter.

Q - Refer to data qualifiers:

U - The analyte was analyzed for but not detected. The associated value is the sample quantitation limit, adjusted for dilution, if any.

J - The associated value is an estimated quantity.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX LABORATORY **1337 S. 46TH STREET BLDG. 201 RICHMOND, CA 94804-4698**

AUG 2 4 2001

MEMORANDUM

SUBJECT:

Case R01S44

Results for Volatile Organic Compounds and Diesel Range Organics Analyses

FROM:

EPA Region 9 Laboratory (PMD-2)

TO:

Tom Mix, Special Assistant for Superfund

Superfund Office (SFD-1)

Attached are the report narrative and results spreadsheet from analysis of samples from the Kaka'ako Brownfields project. These data have been reviewed in accordance with EPA Region 9 Laboratory policy. Summary information for the data included in this report is as follows:

SITE/PROJECT:

Kaka'ako Brownfields

CASE:

R01S44

LABORATORY:

U. S. EPA Region 9 Laboratory

ANALYSIS:

SAMPLE DELIVERY GROUP(S): 01180A, 01177B, 01177C, 01178A

Volatile Organic Compounds (R9 Lab SOP 305) TPH-Diesel Range Organics (EPA method 8015B)

A full documentation package for these data, including raw data and sample custody documentation, has been prepared and is on file at the Region 9 Laboratory. Please contact Vance Fong of the Quality Assurance Program (PMD-3) to request further review and/or validation of the data.

If you have any questions please contact Rich Bauer at (510) 412-2312, or Ken Hendrix at (510) 412-2321.

ATTACHMENT: Analytical Reports

USEPA REGION 9 LABORATORY REPORT NARRATIVE

CASE NUMBER:

R01S44

SAMPLE DELIVERY GROUP:

01180A

PROGRAM:

Superfund

DOCUMENT CONTROL #:

B0101024-0342

ANALYSIS PERFORMED:

GC/MS VOA

DATE:

July 24, 2001

SAMPLE NUMBERS:

Client	Laboratory	Client	Laboratory
Sample ID	Sample ID	Sample ID	Sample ID
KB098	AB31832	KB100	AB31833
KB101	AB31834	KB103	AB31835

GENERAL COMMENTS

Four (4) soil samples were received at the EPA Region 9 Laboratory on 06/29/01 from the Kaka'ako Brownfields site.

These samples were analyzed for volatile organics in accordance with the USEPA Region 9 Laboratory SOP 305, Volatile Organic Analysis for soil.

SAMPLE RECEIPT AND PRESERVATION

No issues related to shipping and preservation were encountered with these samples.

QA/QC AND ANALYTICAL COMMENTS

The following comments appear on the Summary of Analytical Results:

A The following LCS analytes failed to meet criteria. Since these values are biased low, the reported values should be considered as estimated (J).

LCS File ID	Date	Analyte	% Rec	QC Limit
LSJ0629	6/29/01	Dichlorodifluoromethane	40	60 - 140

Accurate spiking of dichlorodifluoromethane is difficult because it is a gas at room temperature.

No target analytes were detected in the method blanks associated with these samples.

All surrogate recoveries were within QC limits.

Inadvertently, no MS/MSD QC analyses were performed for this SDG.

All internal standard areas and retention times were within QC limits.

All LCS results were within QC limits except as stated in comment A..

All samples were analyzed within the holding time.

RESULTS SUMMARY

The results can be found on the Summary of Results report.

Any questions in reference to this data package may be addressed to Nicholas Kish at (510) 412-2375.

Glossary

Method Blanks

A laboratory method blank is laboratory reagent water or sand with all reagents, surrogates, and internal standards added and carried through the same sample preparation and analytical procedures as the field samples. The laboratory method blank is used to determine the level of contamination introduced by the laboratory during analysis.

Storage Blanks

A storage blank is laboratory reagent water that is stored in the laboratory refrigerator for one week. All reagents, surrogates, and internal standards are added at the time of analysis and it is processed through the same sample preparation and analytical procedures as the other blanks. The storage blank is used to determine the level of contamination introduced by the laboratory during sample storage.

<u>Surrogates</u>

Surrogates are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. All samples are spiked with surrogate compounds prior to analysis. Surrogate percent recovery (%R) provides information about both the laboratory performance on individual samples and the possible effects of the sample matrix on the analytical results.

Matrix Spike and Spike Duplicate Analysis

Matrix spike sample and spike duplicate analyses provide information about the effect of the sample matrix on sample preparation and measurement. Poor percent recovery (%R) results and large relative percent difference (RPD) between duplicates may indicate inconsistent laboratory technique, sample nonhomogeneity in soils, or matrix effects which may interfere with analysis.

Internal Standards

Internal standards are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but not normally found in environmental samples. All samples are spiked with internal standard compounds prior to analysis. Internal standard recoveries and retention times provide information about both the instrument performance on individual samples and the possible effects of the sample matrix on the analytical results.

Laboratory Control Samples

Laboratory control samples (LCSs) are analyzed daily to demonstrate comparability of the continuing calibration standard. It is equivalent to the continuing calibration standard, but it is obtained from an independent source.

Case Number: R01S44

Site: Kaka'ako SDG: 01180A Date: 07/23/01 Analysis:

GC/MS Soil VOA

Matrix: Water

Sample No. Sample ID Lab Sample ID Date of Collection	A	NA KB098 B3183 6/28/01		A	NA KB10 AB318 06/28/	00 · 833		A	NA KB10 B318 6/28/0	34		A	NA KB103 AB3183 06/28/0	35			NA hod B WJ06 NA		;
Units	ug/kg			ug/kg				ug/kg				ug/kg				ug/kg			
Analyte	Result		Q Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q (Cmt	Result		Q	Cmt
Dichlorodifluoromethane	20	U	J A	20	U	J	Α	20	U	J	A	10	U	J	Α	10	U	J	Α
Chloromethane	20	U		20	Ų			20	U			10	U			10	U		
Vinyl Chloride	20	U		20	U			20	U			10	U			10	U		
Bromomethane	20	U		20	U			20	U			10	U			10	U		
Chloroethane	20	U		20	U			20	U			10	Ü			10	U		
Trichlorofluoromethane	20	U		20	U		:	20	U			10	U			10	U		ı
1,1-Dichloroethene	20	U		20	U			20	U			10	U			10	U		
Carbon Disulfide	20	U		20	U			20	U			10	U'			10	U		
Acetone	20	U		20	U		<u> </u>	20	U			20				10	U		
Methylene Chloride	20	U		20	U			20	U		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10	Ü			10	U		
trans-1,2-Dichloroethene	20	U		20	U			20	U			10	U			10	U		
Methyl-t-Butyl Ether	20	U		20	Ū.			20	U			10	U			10	U		
1,1-Dichloroethane	20	U		20	U			20	U			10	U			10	U		
Ethyl-t-butyl ether	.20	U	1	20	U			20	U			10	U			10	U		
cis-1,2-Dichloroethene	20	U		20	U			20	U	ľ		10	U			10	U		
2-Butanone	20	U		20	U			20	U			10	U			10	U	1	
Chloroform	20	U		20	U			20	U			10	U			10	U		
1,2-Dichloroethane	20	U		20	U			20	U			10	U			10	U		
tert-Amyl-methyl ether	20	U		20	U			20	U			10	U			10	U		
1,1,1-Trichloroethane	20	U		20	U.			20	U			10	U			10	U		
Carbon Tetrachloride	20	U		20	U			20	U			10	U			10	U		
Benzene	20	U		20	U			20	U			10	Ü			10	U		
Trichloroethene	20	U	Ì	20	U			20	U		1	10	U			10	U		
1,2-Dichloropropane	20	.U		20	U			20	U	Ī		10	U			10	U		
Bromodichloromethane	20	U		20	U			20	U			10	U			10	U		
cis-1,3-Dichloropropene	20	U		20	U			20	U			10	U			10	U		
trans-1,3-Dichloropropene	20	U		20	U			20	U			10	U			10	U		
1,1,2-Trichloroethane	20	U		20	U			20	U			10	U			10	U		
Dibromochloromethane	20	U		20	U			20	U			10	U			10	U		
4-Methyl-2-pentanone	20	Ü		20	U			20	U			10	U			10	U		
Toluene	20	U		20	U			20	U			10	U			10	U		
1,3-Dichloropropane	20	U		20	U			20	U			10	U			10	U		
2-Hexanone	20	U		20	U			20	U			10	U			10	U		
Tetrachloroethene	20	U		20	U			20	U			10	U			10	U		
1,2-Dibromoethane	20	U		20	U			20	U			10	U			10	U		
Chlorobenzene	20	U		20	U			20	U			10	U			10	Ü		
Ethyl Benzene	20	U		20	U			20	U			10	U			10	U		
Xylene (para & meta-)	20	U		20	U			20	Ŭ			10	U			10	U.		
Xylene (ortho-)	20	U		20	U			20	U			10	U			10	U		
Styrene	20	U		20	U			20	U			10	U			10	U		-
Bromoform	20	U		20	U			20	Ū			10	U			10	Ū		
1,1,2,2-Tetrachloroethane	20	U		20	U			20	U			10	U	\bot T		10	U		
1,2,3-Trichloropropane	20	U		20	U			20	U			10	U			10	U		
1,3-Dichlorobenzene	20	U		20	U			20	U			10	U			10	U		
1,4-Dichlorobenzene	20	U		20	U			20	U	$\Box \top$		10	U			10	U		
1,2-Dichlorobenzene	20	U		20	U			20	U			10	Ü			10	U		
1,2-Dibromo-3-chloropropane	20	U		20	U			20	U			10	U			10	U		
% Solid	-84			85				84	İ			85				NA	\neg	\neg	

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

Results reported on a dry-weight basis

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

Case Number: R01S44

Site: Kaka'ako SDG: 01180A Date: 07/23/01

Analysis:

GC/MS Soil VOA

Matrix: Water

Sample No.	Quantita		its
Sample ID	ľ	NA.	
Lab Sample ID	1	NA.	
Date of Collection	ľ	NA.	
Units	ug/kg		
Analyte	Result	Q	Cmt
Dichlorodifluoromethane	10		
Chloromethane	10		
Vinyl Chloride	10		
Bromomethane	10		
Chloroethane	10		
Trichlorofluoromethane	10		
1,1-Dichloroethene	10		
Carbon Disulfide	10		
Acetone	10	_1-	
Methylene Chloride	10		
trans-1,2-Dichloroethene	10	-	
Methyl-t-Butyl Ether	10	-	
1,1-Dichloroethane	10	-	
Ethyl-t-butyl ether	10	-	1
cis-1,2-Dichloroethene	10		
2-Butanone	10		
Chloroform			_
1,2-Dichloroethane	10	- · · ·	├—
tert-Amyl-methyl ether	10	_	ļ
1,1,1-Trichloroethane	10		
Carbon Tetrachloride	10	_	
Benzene	10		<u> </u>
Trichloroethene	10		
1,2-Dichloropropane	10	_	
Bromodichloromethane	10		
cis-1,3-Dichloropropene	10		
trans-1,3-Dichloropropene	10.		L
1,1,2-Trichloroethane	10		
Dibromochloromethane	10		
4-Methyl-2-pentanone	10		
Toluene	10		L
1,3-Dichloropropane	10		
2-Hexanone	10		
Tetrachloroethene	10		
1,2-Dibromoethane	10		
Chlorobenzene	10		
Ethyl Benzene	10		
Xylene (para & meta-)	10		
Xylene (ortho-)	10		
Styrene	10		
Bromoform	10		
1,1,2,2-Tetrachloroethane	10		
1,2,3-Trichloropropane	10	+	-
1,3-Dichlorobenzene	10	_	
1,4-Dichlorobenzene	10		
1,2-Dichlorobenzene	10		-
1,2-Dibromo-3-chloropropane	10 NA		
% Solid Q-Laboratory Data Qualifiers	NA	I	Ц

U-This compound was analyzed for, but not detected.

USEPA REGION 9 LABORATORY REPORT NARRATIVE

CASE NUMBER:

R01S44

SAMPLE DELIVERY GROUP (SDG):

01177C

PROGRAM:

Superfund

DOCUMENT CONTROL #:

B0101024-0340

ANALYSIS PERFORMED:

Total Petroleum Hydrocarbons-Diesel

Range Organics (TPH-DRO)

DATE:

August 2, 2001

SAMPLE NUMBERS:

Client <u>Sample No</u> .	Laboratory <u>Sample ID</u>	Client <u>Sample No.</u>	Laboratory <u>Sample ID</u>
KB013	AB31739	KB072	AB31821
KB047	AB31776	KB078	AB31822
KB074	AB31817	KB088	AB31836
KB069	AB31818	KB094	AB31837
KB070	AB31819	KB102	AB31838
KB071	AB31820	KB105	AB31839

GENERAL COMMENTS

Twelve (12) water samples were received at the EPA Region 9 Laboratory on 06/26/01, 06/27/01, 06/28/01 and 06/29/01 from the Kaka'ako Brownfields site for determination of TPH-DRO.

These samples were analyzed for TPH-DRO in accordance with the Region 9 Laboratory SOP 385, Extractable Petroleum Hydrocarbons by GC FID based on EPA SW-846 Method 8015B, Nonhalogenated Organics Using GC/FID, Revision 2, December 1996 and Region 9 Laboratory SOP 275, Extraction of Petroleum Hydrocarbons from Water Using Continuous Liquid-Liquid Extraction based on EPA SW-846 Method 3520C, Continuous Liquid-Liquid Extraction, Revision 3, December 1996.

SAMPLE RECEIPT AND PRESERVATION

No shipping or preservation issues were encountered with these samples.

QA/QC AND ANALYTICAL COMMENTS

The following comment(s) appear on the Summary of Analytical Results:

A. The samples listed below were extracted beyond holding time. Results and quantitation limits for the samples listed below are estimated and "J" flagged.

Sample ID	Lab ID	Date Collected	Holding Time Date	Date Extracted	Days Beyond
KB074	AB31817	06/27/01	07/04/01	07/26/01	22
KB069	AB31818	06/27/01	07/04/01	07/26/01	22
KB070	AB31819	06/27/01	07/04/01	07/26/01	22
KB071	AB31820	06/27/01	07/04/01	07/26/01	22
KB072	AB31821	06/27/01	07/04/01	07/26/01	22
KB078	AB31822	06/27/01	07/04/01	07/26/01	22

B. The RPD and % recovery of the LFM/LFMD spiking compounds listed below do not meet the QC limits. The result and quantitation limit for the analyte listed below in the QC sample is estimated and "J" flagged.

Sample ID	Lab ID	Analyte		LFMD % Rec	QC Limit	RPD	QC Limit
KB074	AB31817	Diesel	50	112	70 - 130	77	15

White particles were present in the matrix spike sample and LFMD sample extracts, which were yellow after concentration. The matrix spike sample and LFMD samples contain material in the diesel range that does not resemble the chromatographic pattern of diesel but rather that of a light oil. Percent recovery of the diesel spike in the LFMD sample may be enhanced since this material contributed to the Diesel Range quantitation. These samples were re-analyzed (data files: 211M034, 211M035 and 211M036) with the similar results.

C. The following samples contain material in the diesel range that does not resemble the chromatographic pattern of diesel but rather that of a light oil; this material contributed to the Diesel Range quantitation. Sample chromatograms do not display any discernable diesel fuel pattern.

Client Sample No.	Lab sample ID
KB074	AB31817
KB071	AB31820
KB078	AB31822

Additionally, the following QC results are associated with the sample(s) in this SDG:

The surrogate recovery for the sample listed below does not meet QC limits. According to the extraction data sheet, this sample was spiked twice with surrogate.

Sample ID	Lab ID	Surrogate	% Rec	QC Limit
KB072	AB31821	n-Hexacosane	168	70 - 130

This sample was re-analyzed (data file 211L038) with surrogate recoveries at 182 %.

QC limits were met for all initial calibration, CVs, QCS percent differences, QLS percent differences, LFB percent recoveries, surrogate recoveries, except as noted above, and percent recoveries and RPDs for LFM/LFMD QC sample KB013.

All samples were analyzed within the 40 day extract holding time.

No target analytes were detected in the LRB associated with these samples.

Since only two sample containers were provided for sample KB013, one sample container was divided to extract the LFM/LFMD QC samples.

Any questions in reference to this data package may be addressed to Nick Kish at (510) 412-2375.

GLOSSARY

Initial Calibration

The initial calibration demonstrates that the instrument has a linear calibration curve described by percent relative standard deviation (%RSD). The average calibration factors (CFs) determined in the initial calibration are used to quantitate analytes and surrogates.

Quality Control Standard (QCS)

The quality control standard is a mid-point calibration standard prepared from a source different than the calibration standards. The QCS is used to check the accuracy of the initial calibration standards.

Calibration Verification (CV)

The calibration verification checks the instrument performance daily by ensuring the instrument continues to meet the linear calibration curve as demonstrated by percent difference (%D).

Quantitation Limit Standard (QLS)

The quantitation limit standard is used to demonstrate low level quantitation performance for all target compounds.

Laboratory Reagent Blanks (LRBs)

A laboratory reagent blank is laboratory reagent water or baked sand with all reagents, surrogates, and internal standards added and carried through the same sample preparation and analytical procedures as the field samples. The LRB is used to determine the level of contamination introduced by the laboratory during extraction and analysis.

Surrogates

Surrogates are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. All samples are spiked with surrogate compounds prior to extraction. Surrogate percent recovery (%R) provides information about both the laboratory performance on individual samples and the possible effects of the sample matrix on the analytical results.

Laboratory Fortified Sample Matrix and Duplicate (LFM and LFMD) Analysis

Laboratory fortified sample matrix and duplicate analyses provide information about the effect of the sample matrix on sample preparation and measurement. Poor percent recovery (%R) results and large relative percent difference (RPD) between duplicates may indicate inconsistent laboratory technique, sample nonhomogeneity in soils, or matrix effects which may interfere with analysis.

Laboratory Fortified Blank (LFB) Analysis

A laboratory fortified blank is laboratory reagent water or baked sand with all reagents, surrogates, internal standards and representative target compounds added and carried through the same sample preparation and analytical procedures as the field samples. The LFB analyses provide information about the laboratory and method performance. Poor percent recovery (%R) results may indicate poor laboratory technique or poor method performance for a particular class of compounds.

Suffixes to Sample ID and Lab ID

The following suffixes may be attached to sample ID's and lab ID's to distinguish between different extraction samples or analytical runs: RE for re-extraction, RA for re-analysis, and DL for dilution analysis.

Case Number: R01S44

Site: Kaka'ako Brownfields

SDG: 01177C Date: 08/02/01 Analysis:

TPH-DRO

Matrix: Water

Sample No.	-		[-				-	1 1		-			
Sample I.D.	KB013				KB047			1	KB074			KB069			
Lab Sample ID	AB31739	1			AB31776				AB31817			AB31818			
Date of Collection	06/25/01				06/26/01				06/27/01			06/27/01			
Units	ug/L	į			ug/L				ug/L			ug/L			•
Analyte	Result		Q	Com	Result		Q	Com	Result	Q	Com	Result		2 /	Com
TPH-Diesel Range	200	U			200	U			1,000	J	ABC	200	J		Α

Sample No.	-	,		-			-	ł		-	1	
Sample I.D.	KB070		i	KB071			KB072	- 1		KB078	1	
Lab Sample ID	AB31819	.		AB31820			AB31821			AB31822		
Date of Collection	06/27/01			06/27/01			06/27/01			06/27/01	1	
Units	ug/L			ug/L			ug/L			ug/L		
Analyte	Result	Q	Com	Result	Q	Com	Result	Q	Com	Result	Q	Com
TPH-Diesel Range	200	J	A	200	J	Α	200	J	A	2,800	J	AC

Sample No.	-				• .				-				- •			
Sample I.D.	KB088		İ		KB094			1	KB102				KB105			
Lab Sample ID	AB31836				AB31837				AB31838	1 i			AB31839			1
Date of Collection	06/28/01				06/28/01				06/28/01	1			06/28/01			
Units	ug/L				ug/L				ug/L				ug/L			
Analyte	Result		Q	Com	Result		Q	Com	Result		Q	Com	Result		Q	Com
TPH-Diesel Range	200	U			200	U			200	U			200	U		

Sample No.	NA			NA	T			NA					
Sample I.D.	Method Blank			İ	Method Blank				Method Blank				Quantitation Limit
Lab Sample ID	TBLK178				TBLK183	Ì			TBLK207				
Date of Collection	NA				NA				NA	1			
Units	ug/L				ug/L				ug/L	1			ug/L
Analyte	Result		Q	Com	Result		Q	Com	Result		Q	Com	Result
TPH-Diesel Range	200	U			200	U			200	U			200

Com - Comments refer to the corresponding section in the report narrative for each letter.

01177Cdro.123 1

Q - Refer to data qualifiers:

U - The analyte was analyzed for but not detected. The associated value is the sample quantitation limit, adjusted for dilution, if any.

J - The associated value is an estimated quantity.

USEPA REGION 9 LABORATORY REPORT NARRATIVE

CASE NUMBER:

SAMPLE DELIVERY GROUP:

PROGRAM:

DOCUMENT CONTROL #: ANALYSIS PERFORMED:

DATE:

SAMPLE NUMBERS:

R01S44

01178A

Superfund

B0101024-0329

GC/MS VOA

July 23, 2001

	Laboratory		Laboratory
Sample ID	Sample ID	Sample ID	Sample ID
KB053	AB31770	KB056	AB31771
KB057	AB31772	KB059	AB31773
KB060	AB31774	KB051	AB31775
KB065	AB31808	KB066	AB31809
KB067	AB31810	KB068	AB31811
KB076	AB31812	KB077	AB31813
KB082	AB31814	KB084	AB31815
KB085	AB31816	KB086	AB31827
KB087	AB31828	KB092	AB31829
KB093	AB31830	KB097	AB31831

GENERAL COMMENTS

Twenty (20) soil samples were received at the EPA Region 9 Laboratory between 06/27/01 and 06/29/01 from the Kaka'ako Brownfields site.

These samples were analyzed for volatile organics in accordance with the USEPA Region 9 Laboratory SOP 305, Volatile Organic Analysis for soil.

SAMPLE RECEIPT AND PRESERVATION

No issues related to shipping and preservation were encountered with these samples.

QA/QC AND ANALYTICAL COMMENTS

The following comments appear on the Summary of Analytical Results:

- A The amount detected is less than the quantitation limit, and is an estimated value.
- B The Continuing Calibration for the following analyte exceeded QC limits. Since the value is biased low, the reported values for the compound in samples and associated method blank should be considered as estimates in the summary of results spreadsheet.

Instrument	Date	Analyte	Filename	Criteria	QC Limit	Result
НР5973Н	6/29/01	Acetone	CSH0629	%D	25%	-32
HP5973H	6/29/01	4-Methyl-2-pentanone	CSH0629	%D	25%	-38
HP5973H	6/29/01	2-Hexanone	CWH0629	%D	25%	-39

C The following LCS analytes failed to meet criteria. Since these values are biased low, the reported values should be considered as estimated (J).

LCS File ID	Date	Analyte	% Rec	QC Limit
LSJ0629	6/29/01	Dichlorodifluoromethane	40	60 - 140
LSH0629	6/29/01	Dichlorodifluoromethane.	53	60 - 140

Accurate spiking of dichlorodifluoromethane is difficult because it is a gas at room temperature.

D The reported values for the QC sample (KB076, AB31812) should be considered estimates because QC limits were exceeded in the matrix spike /matrix spike duplicate samples for the following compounds. Matrix effects may be present in samples of similar composition to the spiked sample.

Sample ID	Laboratory Sample ID	Analyte	MS %Rec	MSD % Rec	QC Limit	RPD	QC Limit
KB076	AB31812	1,1-Dichloroethene	44	66	59-172	39	22
KB076	AB31812	Benzene	39	57	66-142	38	21
KB076	AB31812	Trichloroethene	37	46	62-137	NA	NA
KB076	AB31812	Toluene	37	56	59-139	41	21
KB076	AB31812	1,3- Dichloropropane	36	65	50-150	58	50
KB076	AB31812	1,2-Dibromoethane	31	54	50-150	55	50
KB076	AB31812	Chlorobenzene	30	39	60-133	26	21
KB076	AB31812	1,2,3- Trichloropropane	30	52	50-150	52	50
KB076	AB31812	1,2-Dibromo-3- Chloropropane	19	28	50-150	NA	NA

The color and texture of the sample matrix for the MS and MSD samples were different. New sample plugs were analyzed on 06/29/01 with similar results for the MS (data file 01J0998).

The laboratory randomly performed MS/MSD analysis for homogenous samples (KB086, AB31827) on 06/29/01. The spike recovery and RPD are within QC limits (01H0925 and 01H0926).

No target analytes were detected in the method blanks associated with these samples.

All surrogate recoveries were within QC limits.

All MS/MSD results were within QC limits except as stated in comment D.

All internal standard areas and retention times were within QC limits.

All LCS results were within QC limits except as stated in comment C.

All samples were analyzed within the holding time.

RESULTS SUMMARY

The results can be found on the Summary of Results report.

Any questions in reference to this data package may be addressed to Nicholas Kish at (510) 412-2375.

Glossary

Method Blanks

A laboratory method blank is laboratory reagent water or sand with all reagents, surrogates, and internal standards added and carried through the same sample preparation and analytical procedures as the field samples. The laboratory method blank is used to determine the level of contamination introduced by the laboratory during analysis.

Storage Blanks

A storage blank is laboratory reagent water that is stored in the laboratory refrigerator for one week. All reagents, surrogates, and internal standards are added at the time of analysis and it is processed through the same sample preparation and analytical procedures as the other blanks. The storage blank is used to determine the level of contamination introduced by the laboratory during sample storage.

Surrogates

Surrogates are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. All samples are spiked with surrogate compounds prior to analysis. Surrogate percent recovery (%R) provides information about both the laboratory performance on individual samples and the possible effects of the sample matrix on the analytical results.

Matrix Spike and Spike Duplicate Analysis

Matrix spike sample and spike duplicate analyses provide information about the effect of the sample matrix on sample preparation and measurement. Poor percent recovery (%R) results and large relative percent difference (RPD) between duplicates may indicate inconsistent laboratory technique, sample nonhomogeneity in soils, or matrix effects which may interfere with analysis.

Internal Standards

Internal standards are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but not normally found in environmental samples. All samples are spiked with internal standard compounds prior to analysis. Internal standard recoveries and retention times provide information about both the instrument performance on individual samples and the possible effects of the sample matrix on the analytical results.

Laboratory Control Samples

Laboratory control samples (LCSs) are analyzed daily to demonstrate comparability of the continuing calibration standard. It is equivalent to the continuing calibration standard, but it is obtained from an independent source.

Case Number: R01S44

Site: Kaka'ako SDG: 01178A Date: 07/23/01 Analysis:

GC/MS Soil VOA

Matrix: V

Water

Sample No. Sample ID Lab Sample ID	A	NA KB05 B317	70		A	NA KB05 AB317	56 771		A	NA KB05 B317	57 172		A	NA KB05 B317	73		A	NA KB00 B317	50 174	
Date of Collection	0	6/26/0)1		()6/26/	01		C	6/26/	01		0	6/26/0	01		0	6/26/	01	
Units	ug/kg				ug/kg]	ug/kg				ug/kg		•	Į	ug/kg			
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt
Dichlorodifluoromethane	20	U	J	С	10	U	J	С	10	U	J	С	10	U	J	С	10	U	J	С
Chloromethane	20	U			10	U			10	U			10	U			10	U		
Vinyl Chloride	20	U			10	U			10	U			10_	U			10	U		
Bromomethane	20	U,		1	10	U			10	U			10	U			10	U		
Chloroethane	20	U			10	U			10	U			10	U			10	U		
Trichlorofluoromethane	20	U			10	U	-		10	U			10	U			10	U		
1,1-Dichloroethene	20	U			. 10	U			10	U			10	U			10	υ		
Carbon Disulfide	20	U			10	U'	in ,	*	10	_U			10	Ü			10	U,		
Acetone	20	U	J	В	10	U	J	В	10	U	J	В	10	U	J	В	10	U	J	В
Methylene Chloride	20	U			10	_ U			10	Ŭ		-4	10.	U	4		10	U		
trans-1,2-Dichloroethene	20	U			10	U			10	U			10	U			10	U		
Methyl-t-Butyl Ether	20	U			10	U			10	U]	10	U			10	U		
1,1-Dichloroethane	20	U			10	U			10	U			10	U			10	U		
Ethyl-t-butyl ether	20	U			10	U			10	U			10	U			10	U		
cis-1,2-Dichloroethene	20	U			10	U			10	U			10	U			10	U		
2-Butanone	20	U		Ĺ	10	U			10	U			10	U			10	U		
Chloroform	20	U			10	U			10	U			10	U			10	U		
1,2-Dichloroethane	20	U			10	U			10	U			10	U			10	U		Ĺ
tert-Amyl-methyl ether	20	U			10	U			10	U			10	Ü			10	U		
1,1,1-Trichloroethane	20	U			10	U			10	U			10	U			10	U		
Carbon Tetrachloride	20	U			10	U			10	U			10	U			10	U		
Benzene	20	U			10	U			10	U			10	U		_	10	U		
Trichloroethene	20	U			10	U			10	U			10	U			10	Ú		
1,2-Dichloropropane	20	U			10	U			10	Ü			10	U			10	U		
Bromodichloromethane	20	U			10	U			10	U			10	U			10	U		
cis-1,3-Dichloropropene	20	U			10	U			10	U			10	U			10	U		<u> </u>
trans-1,3-Dichloropropene	20	U			10	U			10	U			10	U			10	U		
1,1,2-Trichloroethane	20	U.			10	U			10	U			10	U			10	_ U		
Dibromochloromethane	20	U			10	U			10	U			10	U			10	U		L
4-Methyl-2-pentanone	20	Ü	J	В	10	υ	J	В	10	U	J	В	10	U	J	В	10	U	J.	B
Toluene	20	U			10	U			10	U			10	U			10	U		
1,3-Dichloropropane	20	U			10	U	_		10	U			10	U			10	U		
2-Hexanone	20	U	J	В	10	U	J	В	10	U	J	В	10	U	J	_B	10	U	J	В
Tetrachloroethene	20	U			10	U			10	U			10	U			10	U		
1,2-Dibromoethane	20	U		 	· 10	U			10	U			10	U			10	U		
Chlorobenzene	20	U			10	U			10	U	_		10	U			10	U		
Ethyl Benzene	20	U			10	U			10	U			10	U			10	U		
Xylene (para & meta-)	20	U			10	U			10	U			10	U			10	Ų		
Xylene (ortho-)	20	U			10	U			10	U			10	U			10	U		<u> </u>
Styrene	20	U			10	U			10	U			10	U			10	U		
Bromoform	20	U	İ	 	10	U			10	U			10	U			10	U		
1,1,2,2-Tetrachloroethane	20	U		<u> </u>	10	U			10	U			10	U		_	10	U		
1,2,3-Trichloropropane	20	Ū			10	U		L	10	U			10	U			10	U		-
1,3-Dichlorobenzene	20	U		ļ	10	U			10	U			10	Ü			10	U		
1,4-Dichlorobenzene	20	U			10	U		$\perp \perp$	10	U			10	U			10	U		_
1,2-Dichlorobenzene	20	U			10	U			10	U			10	U			10	U		
1,2-Dibromo-3-chloropropane	20	U			10	U			10	U			10	U			10	U		_
% Solid	83				88			L	81				87			ł	81			Į

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value. Cmt-See Report Narrative for Comment Results reported on a dry weight basis

U-This compound was analyzed for, but not detected.

MASTER FILE: voa_h2oc.wk4, version 1.0, 04/04/00, Lotus 123 Release 5

Filename: 01178AV.123

Case Number: R01S44

Site: Kaka'ako SDG: 01178A Date: 07/23/01 Analysis:

GC/MS Soil VOA

Matrix:

Water

(C I. N.		B.T.A		- 1		TAT A				NA				NA				NA		
Sample No.		NA				NA	_		,			l		NA KB06	. –			KB06	0	
Sample ID		KB05				KB06				KB06		.					i			
Lab Sample ID		B317				B318				B318				AB318				B318		
Date of Collection		6/26/0	1			6/27/	01			6/27/	01)6/27/	01			6/27/	J1	
Units	ug/kg				ug/kg				ug/kg				ug/kg				ug/kg			
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt
Dichlorodifluoromethane	20	U	J	С	20	U			10	U			10	U	J	С	10	U		<u> </u>
Chloromethane	20	U			20	U			10	U			10	U			10	Ü		
Vinyl Chloride	20	U			20	U			10	U			10	U			10	U		<u> </u>
Bromomethane	20	U.	٠.		20	U			10	Ų			10	Ü			10	U		<u> </u>
Chloroethane	20	U			20	U			10	U			10	· U			10	U		<u> </u>
Trichlorofluoromethane	20	U	,		20	U			10	U			10	U			10	U		L
1,1-Dichloroethene	20	U			20	U			10	Ú			10	U			10	U		
Carbon Disulfide	20	U	•		20	U		'	10	U			8		J ·	A	10	U		
Acetone	20	U	J	В	20	U			10	U			160				10	U		
Methylene Chloride	20	U			20	U			10	U			10	Ų	: !		10	Ű		
trans-1,2-Dichloroethene	20	U			20	U			10	U]]	10	U			10	U		
Methyl-t-Butyl Ether	20	U	•		20	U			10	U			10	U			10	U		
1,1-Dichloroethane	20	U			20	U			10	, U			10	U			10	U		
Ethyl-t-butyl ether	20	U.			20.	U			10	U.			10	U		• .	10	U		
cis-1,2-Dichloroethene	20	U			20	U			. 10	U			10	U		i	10	U		L
2-Butanone	20	Ü			20	U			10	U			40				10	U		<u> </u>
Chloroform	20	U			20	U			10	U			10	U			10	U		
1,2-Dichloroethane	20	U			20	Ų			10	Ü			10	U			10	U		
tert-Amyl-methyl ether	20	U			20	U			- 10	U			10	U			10	U		ĺ
1,1,1-Trichloroethane	20	U			20	.U			10	U			10	U			10	U		
Carbon Tetrachloride	20	U			20	U			10	U			10	U			10	U		
Benzene	20	U			20	U			10	Ü			10	Ù			10	U		
Trichloroethene	20	U			20	U			10	U			10	U			10	U		
1,2-Dichloropropane	20	U	•		20	υ			10	U			10	U			:10	U		
Bromodichloromethane	20	U			20	U			10	U			10	U			10	U		
cis-1,3-Dichloropropene	20	Ü			20	Ü			10	U			10	U			10	U		
trans-1,3-Dichloropropene	20	U			20	U			10	U			10	U			10	U		l
1,1,2-Trichloroethane	20	U			20	U			10	.U			10	U			10	U		
Dibromochloromethane	- 20	U			20	U			10	U			10	U			10 -	U		
4-Methyl-2-pentanone	20	Ū	J	В	20	U			10	U			10	Ų			10	Ú		
Toluene	20	U			20	U			10	U			10	U			10	U		
1,3-Dichloropropane	20	U			20	U			10	U			10	U			10	Ų		
2-Hexanone	20	U	J	В	20	· U			10	U			10	Ų			10	U		Ī
Tetrachloroethene	20	U			20 ·	U			10	U			10	Ü			10.	U		ĺ
1,2-Dibromoethane	20	U			20	U			10	U			10	U			10	U		
Chlorobenzene	20	U			20	U			10	U			10	Ü			10	U		
Ethyl Benzene	20	Ú			20	U			10	U			10	U			10	U		L
Xylene (para & meta-)	20	Ų			20	U			10	U			10	U			10	U		
Xylene (ortho-)	20	U			20	U			10	U			10	U			10	U		<u></u>
Styrene	20	U			20	U			10	U			10	U			10 .	U		
Bromoform	20	U.			20	U			10	U	[- 10	Ū			10 -	U		
1,1,2,2-Tetrachloroethane	20	Ü			20	U			10	U]		10	U			10	U		
1,2,3-Trichloropropane	. 20	U			20	U			10	U	']		10	U			10	U		
1,3-Dichlorobenzene	20	U			20	U			10	U			10	U	•		10	Û		
1,4-Dichlorobenzene	20	U			20	U			10	U			10	U			. 10	U		
1,2-Dichlorobenzene	20	U			20	U			10	U.			10	U			10	Ü		
1,2-Dibromo-3-chloropropane	20	U			20	U			10	U			10	U			10	U.		
% Solid	86				74	[79				78 [.]	T			79			

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

Results reported on a dry weight basis

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

Case Number: R01S44

Site: Kaka'ako SDG: 01178A Date: 07/23/01 Analysis:

GC/MS Soil VOA

Matrix:

Water

Sample No.		NA				NA				NA				NA:				NA		
Sample ID	1	KB07	6]	KB0'	77		ŀ	(IB08	82	1	1	KB084	ŀ]	KB08	35	
Lab Sample ID	A	B318	12		A	B318	813		A	B318	14		A	B3181	5	٠	A	B318	316	
Date of Collection	00	6/27/0)1		0	6/27	01	ļ	0	6/27/	01		0	6/27/0	1	ļ	0	6/27/	01	
Units	ug/kg				'ug/kg				ug/kg				ug/kg				ug/kg			
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result	*	o	Cmt	Result	•	0	Cmt	Result		Q	Cmt
Dichlorodifluoromethane	10	U	<u> </u>	Cilit	20	U	<u> </u>		10	U	_ <u>x</u> _	T	10	U	Ì		10	U	J	C
Chloromethane	10	U.			20	U			10	U			10	U	-		10	U	•	<u> </u>
Vinyl Chloride	10	U.			20	U			10	U			10	U	\dashv		10	U		ļ
	10	U			20	U		\vdash	10	U	—		10	U	\dashv		10	U		
Bromomethane	10	U	-	-	20	U	<u> </u>		. 10	U			10	U	-		10	U		-
Chloroethane	_	U.			20	U	-		10	U			10	U	\dashv		10	U		-
Trichlorofluoromethane	10	U	J	D	20	U	-	-	10	U			10	U	-		10	U		_
1,1-Dichloroethene	10	U	J	ע	20	U			10	Ü		 	10	U			10	บ		-
Carbon Disulfide	10	U			10	J	A	-	10	U			10	U			10	U	J	В
Acetone	10	U				U	<u> </u>	\vdash	10	U			10	- <u>U</u>			10	Ü		В-
Methylene Chloride		U	· ·		-20		<u> </u>			U			10	U	-			U		-
trans-1,2-Dichloroethene	10	U			20	U.			10			٠.		U			10	U		-
Methyl-t-Butyl Ether	10				20		-	<u> </u>	7.7	U			10-							-
1,1-Dichloroethane	10	U		· ·	20 .	U	<u></u>	ļ	10	U			10	U	-		10	U	-	ļ
Ethyl-t-butyl ether	10	U			20	Ų			10	U		-	10	Ü		. •	10	U		
cis-1,2-Dichloroethene	10	U			20	U			10	U			10	U			.10	U		
2-Butanone	10	U			20	U			10	U			10	U			10	U		_
Chloroform	10	U			20	U		ļ.,	10	U		-	10	U	_		10	U		ļ
1,2-Dichloroethane	10	U			20	U			10	U		_	10	U	4		10	U		<u>. </u>
tert-Amyl-methyl ether	10	Ü			20	U			10	U			10	U	_		10	U		<u> </u>
1,1,1-Trichloroethane	10	Ü			20	U	ļ		10	U			10	U	\dashv		10	U	i	<u> </u>
Carbon Tetrachloride	10	U			20	U			10	U			10	U			10	U		
Benzene	10	U	J	D D	20	U.			10	U			10	U			10	U		
Trichloroethene	10	U	J	D	20	U			10	U			10	U		,	10	U		
1,2-Dichloropropane	10	U,			20	U			10	U			10	Ü	_		10	Ü		
Bromodichloromethane	10	U			20	U	L		. 10	U			. 10	U	_		10	U		
cis-1,3-Dichloropropene	10	U			20	U		·	. 10	U			10	U	_		10	Ŭ,		
trans-1,3-Dichloropropene	10	U			20	U			10	U			10	U			10	U		L
1,1,2-Trichloroethane	10	U	:		20	U			_10	U			10	U			10	Ũ,		
Dibromochloromethane	10	U			20	U	·		10	U		$ldsymbol{ldsymbol{ldsymbol{\sqcup}}}$	10	U			10	U		
4-Methyl-2-pentanone	10	U			20	U	<u> </u>		10	U			10	U			10	U	J	В
Toluene	10	U	J	D	20	U	ļ		10	U			10	U.	_		10	U		<u>.</u> .
1,3-Dichloropropane	10	U ·	J	D	20	U			10	U			10	U			10	U		<u> </u>
2-Hexanone	10	U			20	U			10	U			10	U			10	U	J	В
Tetrachloroethene	10	Ù			20	U		· _	10	U.			10:	U			10	U		·
1,2-Dibromoethane	10	U	J	D	20	U			10	U			10	U			10	U		
Chlorobenzene	10	U	J	D	20	U			. 10	U			10	U			10	U		l
Ethyl Benzene	10	U			20	U			10	U			10	U			10	Ü		
Xylene (para & meta-)	10	U			20	U			10	U			10	U			10	U		, i
Xylene (ortho-)	10 .	Ü			20	U			10	U			10	U			10	U		
Styrene	10	U.			20	U			10	U ⁻			10	U			10	U		
Bromoform	10	U			20 .	U			10	U			10	U			10	U		
1,1,2,2-Tetrachloroethane	10	U			20	U			10	U			10	U			10	U		
1,2,3-Trichloropropane	10	U	J	D	20	U			10	U			10	U			10	U		
1,3-Dichlorobenzene	10	U			20	U			10	U			10	U			10	U		
1,4-Dichlorobenzene	10	U			20	U			10	U			10	U			10	U		
1,2-Dichlorobenzene	10	Ų		•	20	U			10	U			10	U			10	U		
1,2-Dibromo-3-chloropropane	10	U	J	D	20	U			10	U			10	U			10	U		-
% Solid	84				82				80 .				83				81			

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

Results reported on a dry weight basis

 $\label{thm:compound} \mbox{ U-This compound was analyzed for, but not detected.}$

Cmt-See Report Narrative for Comment

Case Number: R01S44

Site: Kaka'ako SDG: 01178A Date: 07/23/01

Analysis:

GC/MS Soil VOA

Matrix:

Water

		27.4								27.4				BT A			1	BIA		
Sample No.	_	NA	_		_	NA				NA				NA				NA	_	
Sample ID		KB08				KB08				KB09				KB09				KB09		-
Lab Sample ID		B318				B318				AB318				B318			1	B318		
Date of Collection		6/28/0)1			6/28/	01			06/28/	01			6/28/	O1			6/28/	01	
Units	ug/kg		_	_	ug/kg		_		ug/kg		_		ug/kg		_		ug/kg		_	
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result	1	<u> </u>	· Cmt	Result		Q	Cmt
Dichlorodifluoromethane	10	U	J	С	20	U	J	С	10	U	J	С	10	U	J	С	20	·U	J	С
Chloromethane	10-	U			20	U			10	U			10	U		ļ <u>.</u>	20	U		
Vinyl Chloride	10	U			20	U		-	10	U			10	U		<u> </u>	20	U		\vdash
Bromomethane	10	Ü			20	U			10	U		-	10	U			20	U		
Chloroethane	10	U			20	U			10	U			10	U			20	U		
Trichlorofluoromethane	10	U.			20	U			10	U		-	10	U			20	U.		
1,1-Dichloroethene	10	U			20	U			10	U			10	Ü			20	U U		
Carbon Disulfide	10	U	J	n	20	U	J	В	10	U		. В	10	U	J	В	20	U		\vdash
Acetone	10	Û	J	В	20	Ü		В		Ü	_ _	, B × ∗× √		Ü	J . ⊗	» В	20	Ü	: .	
Methylene Chloride	10								10				10			ļ	*		-	
trans-1,2-Dichloroethene	10	U			20	U			10	U			10	U			20	U		
Methyl-t-Butyl Ether	10	Ų			20	U			10	U			10				20			\vdash
1,1-Dichloroethane	10	U			20	U			10	U			10	U		-	20	U	,	
Ethyl-t-butyl ether	10	Ü			20	U			10	U		-	10	U			20	U		
cis-1,2-Dichloroethene	10	U			20	U			10	U			10	U			20	U		
2-Butanone	10	U			20	U		ļ	10	U		-	10	U			20	U	:	
Chloroform	10	U			20	U			10	U		-	10	U			20	U		
1,2-Dichloroethane	10	U			20	U		ļ	10	U	_		. 10	U			20	U,		
tert-Amyl-methyl ether	10	U			20	U			10	U		<u> </u>	10	U			20	U		
1,1,1-Trichloroethane	10	U			20	U			10	U	-	-	10	U			20	U		
Carbon Tetrachloride	10	U			20	U			10	U			10	U			20	U		
Benzene	10	U			20	U			10	U	<u>.</u>		10	U			20	U		
Trichloroethene	10	U			20	U		ļ	10	U			10	U			20	U		
1,2-Dichloropropane	10	U			20	U		-	10	U			10	_			20	Ų		
Bromodichloromethane	10				20	U			10	U			10	U			20			\vdash
cis-1,3-Dichloropropene	10	U			20	U			10	U			10 10	U			20	U	-	
trans-1,3-Dichloropropene	10	บ			20	U			10	U			10	U			20	U		
1,1,2-Trichloroethane	10	U			20	Ü			10	U		-	10	U			20	U		
Dibromochloromethane	10		J		20	U	J	-	10	U	J	В	10	U	J	В	20	U		-
4-Methyl-2-pentanone		U	J	В			J	В		\rightarrow	J	В	<u> </u>	U	J	В		_		\vdash
	10	U			20	U U			10	U			10	U		l	20	U U		
1,3-Dichloropropane 2-Hexanone	10	U	J	В	20	_	T	В	10	-	J	В	10 10	U	J	В	20	U		
Tetrachloroethene	10	บ	J	В		U	J	В	10	U		В		U		В	20		: 1	
	10	U U			20	U			10	U			10	U		<u> </u>	20	U		
1,2-Dibromoethane	10	U.			20	U			10	U			10	U			20	U U		
Chlorobenzene		_						 								-	+			
Ethyl Benzene	10	U			20	U			10	U U		-	10 10	U			20	U U		,
Xylene (para & meta-) Xylene (ortho-)	10	U			20	U			10	U		-	10	U				U		
	10	U			20	U				U			10	U		-	20	U		
Styrene	10	U							10	U		-	10	U		-	20			\vdash
Bromoform	10	U			20	U	<u> </u>	 	10	U				U		-	20	U		\vdash
1,1,2,2-Tetrachloroethane		U	-		20	U	_		10	U			10				20	U		$\vdash \vdash$
1,2,3-Trichloropropane	10	U			20	U	<u> </u>		10	U			10 10	U U		<u> </u>	20	U U		
1,3-Dichlorobenzene					20				10			_				├—	20			
1,4-Dichlorobenzene 1,2-Dichlorobenzene	10	U U			20	U			10	U		<u> </u>	10	U U			20	U		
	10	ָ ע	-		20. 20	U			10	U		<u> </u>	10	U			20	U U		
1,2-Dibromo-3-chloropropane	91					U		 	10	U			10	U			20 92	U		\vdash
% Solid	31			لـــــا	80		L	l	86				83			L	92			

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value. Cmt-See Report Narrative for Comment

Results reported on a dry weight basis

U-This compound was analyzed for, but not detected. MASTER FILE: voa_h2oc.wk4, version 1.0, 04/04/00, Lotus 123 Release 5

Filename: 01178AV.123

Case Number: R01S44 Analysis: GC/MS Soil VOA

Site: Kaka'ako Matrix: Water SDG: 01178A

Date: 07/23/01

Sample No.		NA				NA				NA			Quantita	tion Li	nits
Sample ID	Metl	nod B	lank		Metl	hod]	Blank	ζ.	Met	hod I	Blanl	k	ľ	IA	
Lab Sample ID	M	WJ06	28		M	WĦ(629		M	WJ0	629		ľ	NΑ	
Date of Collection		NA				NA				NA			ľ	NA.	
Units	ug/kg				ug/kg				ug/kg				ug/kg		
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result	Q	Cmt
Dichlorodifluoromethane	10	U			10	U	J	С	10	U	J	С	10		
Chloromethane	10	Ü			10	U			10	U			10		
Vinyl Chloride	10	U			10	U			10	U			10		
Bromomethane	10	Ű	-		10	U.	7		10	U			10		
Chloroethane	10	U			10	U			10	U			10	1	
Trichlorofluoromethane	10	Ü			10	U			10	U			10		
1,1-Dichloroethene	10	U			10	U			10	U			10		
Carbon Disulfide	10	U			10	U			10	U			10		
Acetone	10	U			10	U	J	В	10	U			10		
Methylene Chloride	10	U			îò	Ü			10	Ü			10	9	
trans-1,2-Dichloroethene	10	U			10	U			10	U			10		
Methyl-t-Butyl Ether	10	U	-		10	Ü		-	10	U			10	-	
1,1-Dichloroethane	10	U	-		10	U			10	U			10	1	
Ethyl-t-butyl ether	10	U	 -		10	Ú	-		10	Ü			10		
cis-1.2-Dichloroethene	10	U	 		10	U			10	U			10		
2-Butanone	10	บ			10	U			10	U			10	-	
Chloroform	10	U			10	U	-	-	10	U		<u> </u>	10	+	
1.2-Dichloroethane	10	U	-		10	U			10	U		 	10		
	10	U			10	U			10	U			10	+	
tert-Amyl-methyl ether	10	U			10	U			10	U			10		
1,1,1-Trichloroethane		U		-		U			10	U			10	+	ľ
Carbon Tetrachloride	10			<u> </u>	10	U	-		10	U		-	10	+	
Benzene	10	U U	<u> </u>		10	U				U					
Trichloroethene	10		<u> </u>		10				10				10	-	ļ
1,2-Dichloropropane	10	U	├—		10	U			10	U			10	-	
Bromodichloromethane	10	U	 	_	10	U	-		10	U			10	-	
cis-1,3-Dichloropropene	10	U			10	U			10	U		 	10	-	<u> </u>
trans-1,3-Dichloropropene	10	U	ļ. —		10	U	ļ. —		10	U		_	10		<u> </u>
1,1,2-Trichloroethane	10	Ü			10	U			10	U			10	-	-
Dibromochloromethane	10	U	ļ		10	U	ļ .	_	10	U			10	_	-
4-Methyl-2-pentanone	10	U	ļ		10	U	J	В	10	U			10		<u> </u>
Toluene	10	U			10	U	<u> </u>		10	U			10		├─-
1,3-Dichloropropane	10	U	ļ		10	U	_		10	Ü		-	10		-
2-Hexanone	10	U	<u> </u>		10	U	J	В	10	U		ļ	10	-	ļ
Tetrachloroethene	10	U.	ļ		10	U			10	U			10		ļ
1,2-Dibromoethane	10	U			10	U	-		10	U			10		ļ
Chlorobenzene	10	U,	ļ		10	U	<u> </u>	ļ	10	U			10		<u> </u>
Ethyl Benzene	10	U		<u> </u>	10	U			10	U			10		ļ
Xylene (para & meta-)	10	U			10	Ų		ļ	10	U			10		<u> </u>
Xylene (ortho-)	10	U			10	U	ŀ		10	U			10		<u> </u>
Styrene	10	U			10	U			10	U		ļ	10		<u> </u>
Bromoform	10	U		ļ .	10	U			10	U			10		<u> </u>
1,1,2,2-Tetrachloroethane	10	U			10	U	L_		10	U			10		<u> </u>
1,2,3-Trichloropropane	10	U			10	U			10	U			10		
1,3-Dichlorobenzene	10	U			10	U			10	U			10		
1,4-Dichlorobenzene	10	U			10	U			10	U			10		
1,2-Dichlorobenzene	10	U			10	U			10	U			10		
1,2-Dibromo-3-chloropropane	10	U			10	U			10	U			10		

Q-Laboratory Data Qualifiers

Results reported on a dry weight basis

Cmt-See Report Narrative for Comment

U-This compound was analyzed for, but not detected.

USEPA REGION 9 LABORATORY REPORT NARRATIVE

CASE NUMBER:

SAMPLE DELIVERY GROUP:

PROGRAM:

DOCUMENT CONTROL #:

ANALYSIS PERFORMED:

DATE:

R01S44

01177B

Superfund

B0101024-330

GC/MS - Volatiles

July 19, 2001

SAMPLE NUMBERS:

Client	Laboratory	Client	Laboratory
Sample No.	Sample ID	Sample No.	Sample ID
KB002	AB31731	KB026	AB31760
KB004	AB31732	KB027	AB31761
KB007	AB31733	KB030	AB31762
KB008	AB31734	KB032	AB31763
KB011	AB31735	KB037	AB31764
KB012	AB31736	KB038'	AB31765
KB019	AB31737	KB039	AB31766
KB020	AB31738	KB041	AB31767
KB022	AB31758	KB044	AB31768
KB023	AB31759	KB045	AB31769

GENERAL COMMENTS

Twenty (20) soil samples from the Kaka'ako Brownfields Superfund site were received at the EPA Region 9 Laboratory from 06/26/01 to 06/27/01.

These samples were analyzed for volatile organics in accordance with the USEPA Region 9 Laboratory SOP 305, Volatile Organic Analysis.

SAMPLE RECEIPT AND PRESERVATION

No shipping or preservation issues were encountered with these samples.

QA/QC AND ANALYTICAL COMMENTS

The following comments appear on the Summary of Analytical Results:

A The following initial calibration analyte failed to meet criteria, The results and quantitation limits for the analyte should be considered as estimated and "J" flagged.

Instrument	Date	Analyte	Filename	Criteria	QC Limit	Result
НР5973Н	06/26/01	1,2-Dibromo-3- chloropropane	ISH0626	%RSD	20%	21.9%

B The Continuing Calibration for the analytes listed below exceeded QC limits. The results and quantitation limits for the analyte with potential low bias are estimated and "J" flagged.

Instrument	Date	Analyte	Filename	Criteria	QC Limit	Result
HP5973H	06/27/01	Dichlorodifluoromethane	CSH0627	%D	25%	+27.4
HP59.73H	06/27/01	Acetone	CSH0627	%D	25%	-35
HP5973H	06/27/01	4-Methyl-2-pentanone	CSH0627	%D	25%	-35.4
НР5973Н	06/27/01	2-Hexanone	CSH0627	%D	25%	-34.5
HP5973H	06/28/01	Acetone	CSH0628	%D	25%	-32.7
HP5973H	06/28/01	4-Methyl-2-pentanone	CSH0628	%D	25%	-39.6
HP5973H	06/28/01	2-Hexanone	CSH0628	%D	25%	-39.6

Accurate spiking of dichlorodifluoromethane is difficult because it is a gas at room temperature.

No target analytes were detected in the method blanks associated with these samples.

All surrogate recoveries were within QC limits.

All MS/MSD results for the QC sample (KB007, AB31733) were within QC limits.

All internal standard areas and retention times were within QC limits.

All LCS results were within QC limits.

All samples were analyzed within the holding time of 14 days.

RESULTS SUMMARY

The results can be found on the Summary of Results report.

Any questions in reference to this data package may be addressed to Nicholas Kish at (510) 412-2375.

Glossary

Method Blanks

A laboratory method blank is laboratory reagent water or sand with all reagents, surrogates, and internal standards added and carried through the same sample preparation and analytical procedures as the field samples. The laboratory method blank is used to determine the level of contamination introduced by the laboratory during analysis.

Storage Blanks

A storage blank is laboratory reagent water that is stored in the laboratory refrigerator for one week. All reagents, surrogates, and internal standards are added at the time of analysis and it is processed through the same sample preparation and analytical procedures as the other blanks. The storage blank is used to determine the level of contamination introduced by the laboratory during sample storage.

Surrogates

Surrogates are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. All samples are spiked with surrogate compounds prior to analysis. Surrogate percent recovery (%R) provides information about both the laboratory performance on individual samples and the possible effects of the sample matrix on the analytical results.

Matrix Spike and Spike Duplicate Analysis

Matrix spike sample and spike duplicate analyses provide information about the effect of the sample matrix on sample preparation and measurement. Poor percent recovery (%R) results and large relative percent difference (RPD) between duplicates may indicate inconsistent laboratory technique, sample nonhomogeneity in soils, or matrix effects which may interfere with analysis.

Internal Standards

Internal standards are organic compounds which are similar to the target analytes in chemical composition and behavior in the analytical process, but not normally found in environmental samples. All samples are spiked with internal standard compounds prior to analysis. Internal standard recoveries and retention times provide information about both the instrument performance on individual samples and the possible effects of the sample matrix on the analytical results.

Laboratory Control Samples

Laboratory control samples (LCSs) are analyzed daily to demonstrate comparability of the continuing calibration standard. It is equivalent to the continuing calibration standard, but it is obtained from an independent source.

Case Number: RO1S44

Site: Kaka'ako Brownfields

SDG: 01177B Date: 07/19/01 Analysis:

GC/MS Volatiles

Matrix:

Soil

Sample No.		NA				NA				NA				NA				NA		
Sample ID		KB0			1	KB00			1	⟨B 00	7			KB 00	8			KB0	11	
Lab Sample ID	i .	B31				B31				B317				B317				B31		
Date of Collection		6/25				6/25/				6/25/0				6/25/				6/25		
Units	ug/kg	10,23	01		ug/kg	U, LJ,	01		ug/kg				ug/kg	0,25,	•		ug/kg	0,20,	••	
	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt
Analyte Dichlorodifluoromethane	10	U	<u> </u>	Cint	10	Ū	Ţ	Cint	10	U	- ` .	Cint	10	U	Y	Cint	10	U	_	· ·
		U	_		10	Ü			10	U			. 10	U			10	U		_
Chloromethane	10		-						10	U	_	-	10	U			10	U		
Vinyl Chloride	10	U		-	10	U	<u> </u>			-				Ü				U.	<u> </u>	-
Bromomethane	10	U.			10	U	 		10	U			10				10			-
Chloroethane	10	U		 	10	U	<u> </u>	<u> </u>	10	U			10	U			10	U		
Trichlorofluoromethane	10	· U,			10	U	_		10	Ų			10	U			10	U	-	-
1,1-Dichloroethene	10	U	<u> </u>	·	10	U		-	10	U			10	U			-10	U		
Carbon Disulfide	10	U.			10	U	-		.10	U	_	:	10	U			10	U		: <u>.</u>
Acetone	· 10	U	j	В	10	U	J	В	10	U		. ,	10	U	J	В	10	U	· J	В
Methylene Chloride	10	U	-		10.	U	<u> </u>		10	U		:	10	U			10	Ų.		!
trans-1,2-Dichloroethene	10	U		<u> </u>	10	U			10	U			10	U			10	U		
Methyl-t-Butyl Ether	10.	U		<u> </u>	- 10	U	ļ	`	10.	U			10	U			10	U		<u> </u>
1,1-Dichloroethane	10	U			10	U			10	U			10	U			10	U		<u></u>
Ethyl-t-butyl-ether	10	U	L		10	U			10	U			-10	U,		·	10	Ų		
cis-1,2-Dichloroethene	10	U			10	U	<u></u>		10	U			10	U			10	U		
2-Butanone	10	U	J	В	10	U	J.	B.	10	U			. 10	U	J	B	10	U.	J	В
Chloroform	10	U			10	U			10	U			10	U		,	10	U		
1,2-Diclhoroethane	10	U			10	U			10	U			10	U			10	U		
tert-Amyl-methyl ether	10	U			10	U			10	U			10	U			10	U		
1,1,1-Trichloroethane	10	U			10	U			10	U			10	U			.10	Ü		
Carbon Tetrachloride	10	U			10	U			10	U			10	U			10	U		
Benzene	10	U.			10	U			10	U			10	υ			10	U		
Trichloroethene	10	U			10	U			10	U			10	υ			10	U		
1,2-Dichloropropane	10	Ų			. 10	U			10	U			10	Ü			10	U		
Bromodichloromethane	10	U			10	U			10	υ			10	U			10	U		
cis-1,3-Dichloropropene	10	Ù			10	U			10	υ			10	U		٠,	10	Ü		-
trans-1,3-Dichloropropene	10	U			10	U			10	U			10	U			10	Ü		
1,1,2-Trichloroethane	10	U			10	U			10	U			10	Ü			10	U		
Dibromochloromethane	10	U			10	U			10	U			10	U			10	U		
4-Methyl-2-pentanone	10	U	J	В	10	Ų	j	В	10	U			10	U	j	В	10	U	J	В
Toluene	10	U			10	U			10	U			10	U			10	U		
1,3-Dichloropropane	10	Ū			10	Ü			10	U			10	U			10	Ü		
2-Hexanone	10	U	J	. В	10	U	J	В	10	U			10	U	J	В	10	U	J	В
Tetrachloroethene	10	U			10	U			10 .	U			10	Ū			10	U		
1,2-Dibromoethane	10	U			10	U			10	U			10	U			10	U		_
Chlorobenzene	10	U			10	Ű			10	U			10	U			10	U	-	_
Ethyl Benzene	10	·Ų			10	U		-	10	U			10	U			10	U		
Xylene (para & meta-)	10	U			10	U			10	U			10	U			10	U		
Xylene (ortho-)	· 10	Ū			10	U			10	υ			10	U			10	Ū		
Styrene	10	U			.10	U			10	U			10	บ			10	U		
Bromoform	10	U			10	U			10	Ü			10	U			.10	U		
1,1,2,2-Tetrachloroethane	10	U	<u> </u>	\vdash	10	U			10	U			10	U		 	10	Ü		-
1,2,3-Trichloropropane	10	U			10	U			10	U			10	υ			10	U		<u> </u>
1.3-Dichlorobenzene	10	· U			10	U.	_		10	U	\dashv		10	U			10	U		-
1,4-Dichlorobenzene	10	U			10	U			10	Ü	-1		10	U			10	U		
1,2-Dichlorobenzene	10	ŭ		\vdash	10	U			10	บ	\dashv		10	U			10	U		
1,2-Dibromo-3-chloropropane	10	U	J	A	10	U	J	Α	10	U	J	A	10	U	J	A	10	U	J	_
% Solid	88	U	' -	- 1	87		<u> </u>	-1	86	ᅫ	-	^	85		,	^	83	U	J	A_
O Laboratory Data Qualifican	L00		L		1 The		L		00			L	83	1			8.3			<u> </u>

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

Results are reported on a dry weight basis.

Case Number: RO1S44

Site: Kaka'ako Brownfields

SDG: 01177B Date: 07/19/01

Analysis:

GC/MS Volatiles

Matrix:

Soil

Sample No.		NA				NA				NA		•		NA				ΝA		
Sample ID	J	KB01	12		1	KB 01	19		1	KB02	0]	KB02	2		1	KB02	23	- 1
Lab Sample ID	A	B317	736		. А	B317	737		А	B317	38		A	B317	58		A	B317	59	
Date of Collection	0	6/25/	01		. 0	6/25/	01		0	6/25/0)1		0	6/26/0	D1		0	6/26/	01	
Units	ug/kg				ug/kg				ug/kg				ug/kg				ug/kg			
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result		·Q	Cmt	Result		Q	Cmt	Result		Q	Cmt
Dichlorodifluoromethane	10	U	È		10	U	Ì		10	U	Ì		10	U			10	U		
Chloromethane	10	U			10	U			10	U	\neg		- 10	ש			10 -	U		
Vinyl Chloride	10	Ū			10	U			10	U			10	U			10	U		
Bromomethane	10	U			10	U	 -		10	U			10	U			10	Ü		
Chloroethane	10	U			10	Ū			10	Ü	_		10	Ū			10	U		
Trichlorofluoromethane	10	Ū			10	U			10	U	_		10	Ü			10	Ū		
1.1-Dichloroethene	10	Ū			10	U			10	Ü			10	U			10	U		
Carbon Disulfide	10	Ü		-	10	U			10	U			10	U	*		10.	Ü		
Acetone	10	Ū	j	В	10	U	J	В	10	U	J	В	10	U	J	В	10.	Ü	J	В
Methylene Chloride	10	Ū	-		10	U			10	· U/			10	·U			10	U:	_	
trans-1,2-Dichloroethene	10	U	 		10	U			10	U			10	บ			10	U		-
Methyl-t-Butyl Ether	10	<u>U</u>	-	-	10	U			10	U			10	U			10	U		-
1.1-Dichloroethane	10	U			10	U			10	ט	-		10	U			10	U		_
	10	υ	_	_	.10	U	 - -		10	U			10.	U			10	U		
Ethyl-t-butyl ether		7				Ü				_	-	-	10:	Ü		1		U.		
cis-1,2-Dichloroethene		U	ļ.,	_	10		,		10	U		- Di				- n	10		Ť	- D
2-Butanone	ìò	Ü	J	В	10	U	1	В	10	U	J	В	10	Ų	J	В	10	U	J	В
Chloroform	10	U		-	10	U			10	U		r · ·	10	U			10	U		
1,2-Dichloroethane	10	U		-	10	U			10	U			10	U			10	U.		
tert-Amyl-methyl ether	10	U	<u> </u>		10	U			10	U			10	U			10	Ŭ		
1,1,1-Trichloroethane	10	U			10	U			10	U			10	U			10	U		
Carbon Tetrachloride	10	U			10	U			10	U			10	U			10	U		
Benzene	10	U			10	U			10	Ü			10	U			10	U		
Trichloroethene	10	U			10	U	<u> </u>		10	U			10	U	•		10	U		
1,2-Dichloropropane	10	U			10	U			10	U			10	U			10	Ü		
Bromodichloromethane	10 ·	U			10	U			10	U			10	U			10	U		
cis-1,3-Dichloropropene	10	Ų	<u> </u>		10	Ū			10	U			10	U			10	U		
trans-1,3-Dichloropropene	10	U	Ĺ		10	U			10	U			10	U			10	U		
1,1,2-Trichloroethane	10	Ų			10	U			10	Ū			10	U			10	U		
Dibromochloromethane	10	Ü			10	U			10	U		•	10	U			10	U		
4-Methyl-2-pentanone	10	U]	В	10	U	j	В	10	U	J	В	10	U	J	В	10	U	J	В
Toluene	10	U			10	U			10	U			10	U			10	Ū		
1,3-Dichloropropane	10	Ų			10	Ü			10	U			10	U			10	U		
2-Hexanone	10	U	. J	В	10	U	J	В	10	U	J	·B	10	U	J	В	10	U	· J	В
Tetrachloroethene	10	U			10	U			10	U			10	U			10	Ų		
1,2-Dibromoethane	10	U			10	U		,	10	U			10	U			10	U		
Chlorobenzene	10	U			10	U			10	U			10	U			10	U		
Ethyl Benzene	10	U			10	U			10	U			10	U			10	υ		
Xylene (para & meta-)	10	Ù			10	U			10	U			10	Ų			10	U		
Xylene (ortho-)	10	U			10	U			10	U			10	U			10	U		
Styrene	10	Ü			10	U			10	U			10	Ü			10	U		,
Bromoform	10	U			10	U			10	Ū			10	Ū			10	U		
1,1,2,2-Tetrachloroethane	.10	Ū			10	U			10	U			10	Ū			10	U		
1,2,3-Trichloropropane	10	υ			10	U	<u> </u>		10	Ū			10	Ü			10	U		
1,3-Dichlorobenzene	10	U	 		10	U			10	U		-	10	Ū			. 10	U		
1,4-Dichlorobenzene	10	U	-		10	U			10	U			10	υ		 	10	U		
1,2-Dichlorobenzene	10	U	-		10	U	-		10	υ			10	Ü			10	U	-	
	10	U	J		10	. U	J			U	_			U				U.	, T	
1,2-Dibromo-3-chloropropane		U	ا	Α		. U	J -	A	10	U	J	_A	10	0	J	_ A	10	U	J	A
% Solid	87		L	L	93		L	L	81	i			89				89			

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

Results are reported on a dry weight basis.

Case Number: RO1S44

Site: Kaka'ako Brownfields

SDG: 01177B Date: 07/19/01 Analysis:

GC/MS Volatiles

Matrix:

Soil

·	•																		
Sample No.	I	NA				NA			•	NA		ĺ		NA			NA		
Sample ID		KB02	26		1	KB02	.7		F	CB03	0		1	KB032			KB03	37	
Lab Sample ID	A	B317	760		A	B317	61		A	B317	62		А	B31763		A	B317	64	
Date of Collection	0	6/26/	01		0	6/26/	01		00	6/26/0	01		0	6/26/01		0	6/26/	01	
Units	ug/kg				ug/kg				ug/kg				ug/kg			ug/kg			
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result	Q	Cmt	Result		Q	Cmt
Dichlorodifluoromethane	10	U			10	U			10	U			10	U	T	10	U		
Chloromethane	10	Ū			10	U			10	U			.10	Ű		10	U		
Vinyl Chloride	10	U			10	U			10	U			10	U		10	U		
Bromomethane	10	U	-		10	Ü			10	`U			10	U		-10	U		
Chloroethane	10	U			10	Ū			10	U			10	U		10	U		
Trichlorofluoromethane	10	.U.			10	U			10	U			10	U,		10	U		
1.1-Dichloroethene	10	U			10	·Ū			10	Ū			10	U		10	U		
Carbon Disulfide	10	U			10	Ü			10	บ			.10	U		10	Ü		
Acetone	10	Ū	J	В	10	U	J	В	10	U	J	В	10	UJ	В	10	U	J	В
Methylene Chloride	10	U			10	U:	:	,	10 .	U			10	U	b	10	U		
trans-1,2-Dichloroethene	10	U			10	U			10	U			10	U	1	10	U		
Methyl-t-Butyl Ether	10	U			10	U			10	U			10	U		10	U		
1,1-Dichloroethane	10	U			10	U			10	U			10	U	1	10	Ü		<u> </u>
Ethyl-t-butyl ether	10	U	,		10	U,	1.		1Ò	Ü			10	Ü	+	10	U		
cis-1,2-Dichloroethene	10	U			10	U			10	U			10	U	1	. 10	U		
2-Butanone	10	U	J	В	. 10	U	J.	В	10	U	J	В	10	UJ	В	10	U	J	В
Chloroform	10	U	Ť		10	U			10	U			10	U	+	10	U		
1,2-Dichloroethane	10	U			10	U			10	U			10	Ū.	+	10	U		
tert-Amyl-methyl ether	10	U			10	·U			10	บ			10	Ū	1	10	υ		<u> </u>
1,1-1-Trichloroethane	10	U			10	Ü			10	Ū			10	Ü	+	10	Ü.		-
Carbon Tetrachloride	10	U			10	υ			10	U			10	U	+	10	U		
Benzene	10	U			10	U			10	U			10	Ü	+	10	U	1.	
Trichloroethene	10	U			10	U	-		10	U			10	U		10	U		<u> </u>
	10	U			10	U			10	U			10	U	 	10	Ü		-
1,2-Dichloropropane	10					U U			10				10	U	+			-	ř
Bromodichloromethane	-	Ū	 		10	U				U				U	+	10	U		-
cis-1,3-Dichloropropene	10	U .	_		10	U			10	U			10	U	+	10			Ĺ-
trans-1,3-Dichloropropene	10	Ū				Ü				_					┼	10	U		
1,1,2-Trichloroethane	10		-		10 10	U			10	U			10	U U	-	10	Ū		ļ
Dibromochloromethane	10	Ū	т	B	10	.U	J	В٠	10	U			10	U J	+ n	10	U	т.	
4-Methyl-2-pentanone	-		J	В			J	В.			J	В			B	10	_	J	В
Toluene	10	U	-	_	10	U			10	U			10	U	 	10	U		
1,3-Dichloropropane	.10	U	-		10	U			10	U			10	U	+	10	U		<u> </u>
2-Hexanone	10	U	J	В	10	U	J	В	10	U	J	В	10	U J	В	10	U	J	В
Tetrachloroethene	10	U	ļ		10	U			10	U			10	U	+	10	Ü		<u> </u>
1,2-Dibromoethane	10	U	_		10	U			10	U			10	U	-	10	U		ļ
Chlorobenzene	10	Ū			10	U.			10	U			10	U		10	Ü		
Ethyl Benzene	10	U			10	U			10	U		_	10	U	ļ	10	U		<u> </u>
Xylene (para & meta-)	10	U			10	U			10	U			10	U	1	10	Ų		
Xylene (ortho-)	10	U	ļ		. 10	U			10	U			10	U		10	U		
Styrene	10	U			10	U			10	U			10	U		10	U		
Bromoform	10	U	<u> </u>		10	U			10	U			10	U	ļ	10	U		<u> </u>
1,1,2,2-Tetrachloroethane	10	U	<u> </u>		10	U			10	U			10	U	1	10	U		<u> </u>
1,2,3-Trichloropropane	10	U			10	U			10	U			10	U	4	10	U		—
1,3-Dichlorobenzene	10	U			10	U			10	U			10	Ù	<u> </u>	10	U		<u> </u>
1,4-Dichlorobenzene	10	U			10	Ü			10	U			10	U		10	U		
1,2-Dichlorobenzene	10	U			10	U			10	U			10	U	1	10	U		·
1,2-Dibromo-3-chloropropane	10	U	J	Α ·	10	U.	J	Α	10	U	J	Α	10	U J	A	10	Ü	J	Α
% Solid	88			L	84				86				87			84			

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

Results are reported on a dry weight basis.

Case Number: RO1S44

Analysis:

GC/MS Volatiles

Site: Kaka'ako Brownfields

Matrix: Soil

SDG: 01177B Date: 07/19/01

Sample No.		NA				NA KB03				NA KB04	1			NA KB04				NA KB04		
Sample ID		KB03																		
Lab Sample ID		B317				B317				B317				B317				B317		
Date of Collection		6/26/	01			6/26/	01			6/26/0)1			6/26/	01			6/26/	01	
Units	ug/kg				ug/kg				ug/kg.				ug/kg				ug/kg			
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt
Dichlorodifluoromethane	10	U			10	U			10	U			10	U			10	U		
Chloromethane	10	U			10	Ú			10	U,			10	U			10	U		
Vinyl Chloride	10	U			10	U			10	Ü.			10	U			10	U		
Bromomethane	10′	U			10	U			10	U,			10	U			10	U		
Chloroethane	10	U			10	, U			10	U			10	U			10	U		
Trichlorofluoromethane	10	U			10	U			10	Ų			10	U			10	U		
1,1-Dichloroethene	10	U			10	U			10	U			10	Ü			10	Ü		
Carbon Disulfide	10	Ű			10	U	٠.		10	U			10	U			10	Ū		
Acetone	10.	U	J	В	10	U	J	В	10	บ	J	В	10	U	J	В	10	Ü	J	В
Methylene Chloride	10	U:			10	U			10	U	Ţ.,		10	U			10	Ü		
trans-1,2-Dichloroethene	10	U			10	U			10	U			10	U			10	U		
Methyl-t-Butyl Ether	10	U		· '	10	U		•	10	U			10	Ŭ.			.10	U.		
1,1-Dichloroethane	10	U			10	Ū			10	U	_		10	U			10	U		
Ethyl-t-butyl ether	10	U			10	Ú			10	U			10	U	į.	-	10	U		1
cis-1.2-Dichloroethene	10	U			10	Ú			10	U			10	U			10	U		
2-Butanone	10	U	J	В	10	U	J	В	10	υ	J	В	10	U	J	В	10	Ū.	J.	В
Chloroform	10	U	Ť		10	Ū			10	U			10	· U			10	U		
1,2-Dichloroethane	10	U			10	U			10	U			10:	U			10	U		
tert-Amyl-methyl ether	10	U			10	U			10	U			10	U	ļ		10	U	_	
1,1,1-Trichloroethane	10	U		<u> </u>	10	U			10	U			10	U.			10	U		
Carbon Tetrachloride	10	U			10	U			10	U			10	U			10	U		
Benzene	10	U			10	Ü			10	U			10	Ü			10	U		-
Trichloroethene	10	U			10	U			10	U	-		10	U			10	U U		
1,2-Dichloropropane	10	Ü			10	U			10	บ			10	U			10	U.	_	 -
Bromodichloromethane	10	U			10	U			10	U	-		10	U	·		10	U		-
·	10	U			· 10	U			10	U			10	U	-		10	U.	,	1
cis-1,3-Dichloropropene		U				Ü			10	U			10	U	-		10	U.	-	
trans-1,3-Dichloropropene	10			<u> </u>	10	U				U			_	U				U.	-	+
1,1,2-Trichloroethane	10	U			10				10	\rightarrow			10				10			
Dibromochloromethane	10	U			10	U			10	U		_	10	U		-	10	U	-	
4-Methyl-2-pentanone	10.	U	J	В	10	U	J	В	10	U.	J	B	10	U	J	В	10	U	J	В.
Toluene	10	U			10	U			10	U			10	U			10	U		
1,3-Dichloropropane	10	U		<u> </u>	10	Ü			10	U			10	U			10	U		
2-Hexanone	10	U	J	В	10	U	J	В	10	U	J	В	10	Ü	J	В	10	U	J	В
Tetrachloroethene	10	U			10	Ų			10	Ü			10	U			10	Ú		-
1,2-Dibromoethane	10	Ŭ			10	U			10	U			10	U			10	U		ļ
Chlorobenzene	10	U		<u> </u>	10	U			10	U			10	٠U		ļ	10	U	ļ	ļ
Ethyl Benzene	10	U			10	U			10	U			10	U			. 10	Ų	<u> </u>	↓
Xylene (para & meta-)	10	U			10	U			10	U			10.	U			10	U		ļ
Xylene (ortho-)	10	U.			10	U			10	U		\sqcup	10	U			10	U		<u> </u>
Styrene	10	U			10	Ū			10	U		-	10	U			10	U		<u> </u>
Bromoform	10	U		· .	10	U			10	U			10	U			10	U		↓
1,1,2,2-Tetrachloroethane	10	Ú			10	Ù			10	U			10	U			10	U	L	
1,2,3-Trichloropropane	10	Ú			10	U			10	U			10	U	<u> </u>		10	U		
1,3-Dichlorobenzene	10	Ų			10	U			10	U			10	U			10	U		
1,4-Dichlorobenzene	10	U			10 -	U			10	U			10	U			10	U		
1,2-Dichlorobenzene	10	Ü			10	U			10	U			10	U			10	U		
1,2-Dibromo-3-chloropropane	10	U	J	Α	10	U	·J	Α	. 10	U	J	, A	10	U	J	Α	10	U	J	Α
% Solid	86				87				86				90				87			

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

Results are reported on a dry weight basis.

Case Number: RO1S44

Site: Kaka'ako Brownfields

Analysis:

GC/MS Volatiles

SDG: 01177B Date: 07/19/01 Matrix: Soil

Sample No.	Met	hod I	Blank	ζ.	Meti	nod E	Blank	:	Met	hod l	Blank		Quant	tation	
Sample ID	M	ISH0	526		M	SHO	27		N	ISH0	628		Lir	nit	
Lab Sample ID		NA				NA				ΝA			· N	A	
Date of Collection		NA				NA				NA			N	A	
Units	ug/kg				ug/kg				ug/kg				ug/kg		
Analyte	Result		Q	Cmt	Result		Q	Cmt	Result		Q	Cmt	Result	0	Cmt
Dichlorodifluoromethane	10	υ	•		10	U	_		10	U			10	Τ	
Chloromethane	10	υ			10	U			10	U			10	 	
Vinyl Chloride	10	Ū			10	U			10	U			10	T	1
Bromomethane	10	U			10	U			10	U			10	1	
Chloroethane	10	U			10	U			10	U			10	1	
Trichlorofluoromethane	10	U	٠.		10	Ü			10	Ü			10	+	
1.1-Dichloroethene	10	U			10	U			10	U			10	+	
Carbon Disulfide	10	Ü		-	10	U			10	U			10	+	- 7
Acetone	10	U			10	U	J	В	10	U	J	В	10	+-	
Methylene Chloride	10	U			10.	U,	•		10	U			10	+	
·	10	U			10	U,	-		10	U			10		<u> </u>
trans-1,2-Dichloroethene	10	U				U.			10	ับ	-		10	+	
Methyl-t-Butyl Ether	10	U		<u> </u>	10	U		i	· · · · · · · · · · · · · · · · · · ·	U		-	10	+	
1,1-Dichloroethane		Ü,	,		10				10	- 1			10	+	-
Ethyl-t-butyl ether	10				. 10	Ų			10	U				1	-
cis-1,2-Dichloroethene	10	U			10	U	٠,		10	U	т.	P	10	-	
2-Butanone	10	U			10	U	J	В	10	U	J.	В.	10	1	
Chloroform	10	U			10	U			10	U			10	 	
1,2-Dichloroethane	10	U			10	Ú.			10	U			10	+	<u> </u>
tert-Amyl-methyl ether	10	Ü			10	U			10	U			10	+	ļ
1,1,1-Trichloroethane	10	U	-		10	, U			10	U			10	1	ļ .
Carbon Tetrachloride	10	U			10	U			10	Ü			10	 	<u> </u>
Benzene	10	U			10	U			10	U		-	10	+	ļ
Trichloroethene	10	U			10	U			10	U			10	↓	ļ
1,2-Dichloropropane	10	Ų			10	U			10	Ü			10	-	<u> </u>
Bromodichloromethane	10	U			10	U.			10	U			10	4	<u> </u>
cis-1,3-Dichloropropene	10	U			10	U			10	U			10	_	
trans-1,3-Dichloropropene	10	U			10	U			10	U			10		ļ
1,1,2-Trichloroethane	10	U			10	U			10	U			10		ļ
Dibromochloromethane	10	U			10	U			10	U			10		
4-Methyl-2-pentanone	10	U	•		10	U	J	В	10	U	J	В	10	1.	ļ
Toluene	10	U			10 -	U			10	U			10		
1,3-Dichloropropane	10	U			10	U			10	U'			10		
2-Hexanone	10	· U			10.	U	J	В	10	U	J	В	10	_	
Tetrachloroethene	10	U			10	U			10	U			10		Ļ
1,2-Dibromoethane	10	U			10	U			10	U			10		
Chlorobenzene	10	U			10	Ú			10	U			10		
Ethyl Benzene	10	U			10	U			10	U		lT	10		
Xylene (para & meta-)	10	U			10	U			10	U			10		
Xylene (ortho-)	10	U			10	U			10	U			10		
Styrene	10	U			10	U			10	U			10		
Bromoform	10	U			10	U			10	υ			10		
1,1,2,2-Tetrachloroethane	10	· U			10	Ü			10	U		-	10	T	
1,2,3-Trichloropropane	·10	U			10	U			10	U			10		
1,3-Dichlorobenzene	.10	Ü			10	Ü			10	U			10 ·		
1,4-Dichlorobenzene	10	U			10	υ			10	U			10	1	
1,2-Dichlorobenzene	10	Ù			10	U	-		10	U			10		1
1,2-Dibromo-3-chloropropane	10	U	J	A	10	Ū	J	Α	10	U	J	Α	10	+	

Q-Laboratory Data Qualifiers

J-The amount detected is an estimated value.

U-This compound was analyzed for, but not detected.

Cmt-See Report Narrative for Comment

Results are reported on a dry weight basis.

ICF Consulting / Laboratory Data Consultants

Environmental Services Assistance Team, Region 9

1337 South 46th Street, Building 201, Richmond, CA 94804-4698

Phone: (510) 412-2300 Fax: (510) 412-2304

MEMORANDUM

TO:

do SimHanson Tom Mix

Brownfields Project Officer Brownfields Team, SFD-1-1

THROUGH:

Rose Fong

ESAT Project Officer

Quality Assurance (QA) Program, PMD-3

FROM:

Doug Lindelof

Data Review and OA Document Review Task Manager Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68-W-01-028

Task Order: B01

Technical Direction No.: B0105034 Amendment 1

DATE:

November 14, 2001

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE:

Kaka'ako BF

SITE ACCOUNT NO.:

09 00 LA00

CERCLIS ID NO.:

None

CASE NO.:

29448

SDG NO .:

MY05T8 Sentinel, Inc. (SENTIN)

LABORATORY: ANALYSIS:

Total Metals

SAMPLES:

20 Soil Samples (see Case Summary)

COLLECTION DATE: June 26 and 28, 2001

REVIEWER:

Calvin Tanaka, ESAT/Laboratory Data Consultants (LDC)

The comments and qualifications presented in this report have been reviewed by the EPA Task Order Project Officer (TOPO) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Rose Fong (QA Program/EPA) at (415) 744-1534.

Attachment

cc: Edward Messer, CLP PO USEPA Region 4 Steve Remaley, CLP PO USEPA Region 9

ESAT File

CLP PO: []FYI []Attention [X]Action

SAMPLING ISSUES: [X]Yes []No

Data Validation Report

Case No.:

29448

SDG No.: MY05T8

Site:

Kaka'ako BF

Laboratory:

Sentinel, Inc. (SENTIN)

Reviewer:

Calvin Tanaka, ESAT/ICF-LDC

Date:

November 14, 2001

I. Case Summary

SAMPLE INFORMATION:

MY05T8, MY05T9, MY05W0 through MY05W9, MY05Z9, Samples:

MY0600 through MY0603, and MY0606 through MY0608

Concentration and Matrix:

Low Concentration Soils

Analysis: Total Metals

ILM04.1

SOW: Collection Date:

June 26 and 28, 2001

Sample Receipt Date:

June 29 and July 2, 2001

Preparation Date:

Analysis Date:

July 10 and 12, 2001 July 14 and 15, 2001

FIELD QC:

Field Blanks (FB):

Not Provided

Equipment Blanks (EB):

MY05T6 and MY0617 (See Additional Comments)

Background Samples (BG):

Not Provided

Field Duplicates (D1):

Not Provided

Method Blanks and Associated Samples:

PBS:

Samples listed above

LABORATORY QC:

Matrix Spike:

MY05T8S

Duplicates: ICP Serial Dilution: MY05T8D

MY05T8L

ANALYSIS:

Total Metals

Sample Preparation

and Digestion Date

Analysis Date

ICP Metals

Analyte

July 10, 2001

July 14 and 15, 2001

Mercury

July 12, 2001

July 12, 2001

Percent Solids

July 10, 2001

CLP PO ACTION:

The results for selenium in samples: all samples except MY05T8 are rejected (R) since less than 30% of the matrix spike was recovered.

CLP PO ATTENTION:

None.

SAMPLING ISSUES:

(1) The cooler containing samples MY05T8, MY05T9, MY05W0 through MY05W9 arrived at the laboratory with a temperature of 8.0° C. This temperature exceeds the $4\pm2^{\circ}$ C temperature specified in the Statement of Work (SOW). Although the soil samples were received by the laboratory more than 24 hours after the last sample was collected, the cooler temperature did not exceed 20° C and no adverse effect on the quality of the data is expected. (2) The chain of custody (CoC) did not specify a sample to be used for laboratory quality control (QC).

ADDITIONAL COMMENTS:

The standards preparation data was not included in the data package. This information was requested from the laboratory but has not been received to date. Data quality is not likely to be affected and this report is considered final. Refer to the attached telephone record log (TRL) for details.

The results for equipment blanks MY05T6 and MY0617, collected with the samples of this sample delivery group (SDG), on June 26 and 28, 2001, respectively, are located in Case 29448, SDG MY05R8 and SDG MY05Y2, respectively. No qualification of data due to equipment blank contamination is warranted.

CRDL Standard recovery is outside the EPA Region 9 Advisory Limits of 65-135%. A low recovery of 60% was obtained for lead in the ICP analysis of the CRDL standard CRI. While there are no criteria established for CRDL standard recoveries, low recoveries indicate uncertainty for sample results near the CRDL. It should be noted that low recoveries may indicate low bias for lead in sample MY05W1.

All method requirements specified in the EPA Contract Laboratory Program (CLP) Inorganic Statement of Work (SOW) have been met.

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B.

This report was prepared in accordance with the following documents:

- ESAT Region 9 Standard Operating Procedure 906, Guidelines for Data Review of Contract Laboratory Program Analytical Services (CLPAS) Inorganic Data Packages;
- Multi-Media, Multi-Concentration, Inorganic Analytical Service for Superfund (ILM04.1); and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

II. Validation Summary

The data were evaluated based on the following parameters:

<u>Parameter</u>	<u>Acceptable</u>	Comment
 Data Completeness Sample Preservation and Holding Times Calibration Initial Calibration Verification Continuing Calibration Verification Calibration Blank CRDL Standard 	Yes Yes Yes	
4. Blanks a. Laboratory Preparation Blank b. Field Blank c. Equipment Blank	Yes	
 5. ICP Interference Check Sample Analysis 6. Laboratory Control Sample Analysis 7. Spiked Sample Analysis 	No Yes No	C A,D
 8. Laboratory Duplicate Sample Analysis 9. Field Duplicate Sample Analysis 10. GFAA QC Analysis a. Duplicate Injections b. Analytical Spikes c. Method of Standard Addition 	No Yes N/A	E
11. ICP Serial Dilution Analysis 12. Sample Quantitation 13. Sample Result Verification	No Yes Yes	F B

N/A = Not Applicable

III. Validity and Comments

- A. The following nondetected results are rejected because of a matrix spike recovery result outside method QC limits and flagged "R" in Table 1A.
 - Selenium in samples MY05T9, MY05W0 through MY05W9, MY05Z9, MY0600, through MY0603, and MY0606 through MY0608

The matrix spike recovery result for selenium in QC sample MY05T8S did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for selenium is presented below and is based on an ideal recovery of 100%.

Analyte	MY05T8S <u>% Recovery</u>	MY05T8S <u>% Bias</u>
Selenium	29	-71

The results reported for selenium in samples listed above are below the method detection limit (MDL) and are considered unacceptable as less than 30% of the matrix spike was recovered. The low matrix spike recovery indicates an analytical deficiency and false negatives may exist.

According to the Inorganic SOW when the pre-digestion spike recovery results for ICP analytes (except silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. A post-digestion spike recovery result of 55% was obtained for selenium in QC sample MY05T8A. Since both the post- and pre-digestion spikes did not meet the QC criteria, matrix effects may be present in the sample digestate which may depress the analyte signal during analysis.

Matrix spike sample analysis provides information about the effect of the sample matrix on sample preparation and measurement methodology.

- B. The following results are estimated and flagged "J" in Table 1A.
 - All results above the MDL, but below the contract required detection limit (denoted with an "L" qualifier)

Results above the MDL for soils but below the contract required detection limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- C. The following results are estimated because of ICP interference check sample (ICS) results outside method QC limits and flagged "J" in Table 1A.
 - Cadmium, selenium, silver, and thallium in samples MY05T8, MY05W0, MY05W5, MY05W7, MY05W8, and MY05Z9

Results for the above listed analytes were reported from undiluted analyses that contained an iron concentration above that stated for the ICP interference check sample (ICS). Therefore, the applied interelement correction (IEC) factors may not compensate sufficiently for the interference. The results for cadmium may be biased high and false positives may exist. The results for selenium, silver, and thallium may be biased low and false negatives may exist.

The ICP ICS solutions A and AB are analyzed to determine the effects of high concentrations of interfering elements on each analyte determined by ICP. Solution A consists of the interferents (Al, Ca, Fe, and Mg), and Solution AB consists of the analytes mixed with the interferents.

When the estimated concentration produced by the interfering element is greater than twice the CRDL and also is greater than 10% of the reported concentration of the affected element, the results of the affected elements are estimated.

- D. The following results are estimated because of matrix spike recovery results outside method QC limits and flagged "J" in Table 1A.
 - Antimony, arsenic, chromium, copper, manganese, nickel, and zinc in all samples
 - Selenium in sample MY05T8

The matrix spike recovery results for antimony, arsenic, chromium, copper, manganese, nickel, selenium, and zinc in QC sample MY05T8S did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

MY05T8S % Recovery	MY05T8S <u>% Bias</u>
42	-58
5	-95
61	-39
227	+127
-28	-128
224	+124
29	-71
12	-88
	% Recovery 42 5 61 227 -28 224 29

Results above the MDL are considered quantitatively uncertain. The results reported for antimony, arsenic, chromium, manganese, and zinc in all samples may be biased low and, where nondetected, false negatives may exist. The results reported for selenium in sample MY05T8 may be biased low. The results reported for copper and nickel in all samples may be biased high.

According to the Inorganic SOW, when the pre-digestion spike recovery results for ICP analytes (except silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. The following post-digestion spike recovery results were obtained.

	MY05T8A
	Post-Digestion Spike
<u>Analyte</u>	% Recovery
Antimony	91
Arsenic	9 8 ·
Chromium	89
Copper	100
Manganese	77
Nickel .	102
Selenium	55
Zinc	92
	*

Since the post-digestion spike recovery was acceptable for all analytes except selenium, the low pre-digestion spike recovery results may indicate sample nonhomogeneity, poor laboratory technique or matrix effects which may interfere with accurate analysis, enhancing or depressing the analytical result. Since both the post- and pre-digestion spikes for selenium did not meet the QC criteria, matrix effects may be present in the sample digestate which may depress the analyte signal during analysis.

It should be noted that the results for selenium in all samples except MY05T8 were previously rejected. Please refer to Comment A.

The matrix spike sample analysis provides information about the effect of the sample matrix on the digestion and measurement methodology.

- E. The following results are estimated because of laboratory duplicate results outside method QC limits and flagged "J" in Table 1A.
 - Arsenic and copper in all samples

Laboratory duplicate results did not meet the ± 35 relative percent difference (RPD) and $\pm 2 \times \text{CRDL}$ criteria for precision as listed below.

MY05T8D Lab. Dup.

Analyte

RPD / Difference

Arsenic

--- / 6.2 mg/Kg

Copper

55 / ---

The results reported for arsenic and copper in all samples are considered quantitatively uncertain.

Duplicate analyses demonstrate the analytical precision obtained for each sample matrix. The imprecision between duplicate results may be due to sample nonhomogeneity or poor laboratory technique.

- F. The following results are estimated because of an ICP serial dilution result outside method QC limits and flagged "J" in Table 1A.
 - Sodium in all samples

The percent difference of the ICP serial dilution analysis of sample MY05T8L did not meet the 10% criterion for sodium shown below.

MY05T8L <u>% Difference</u>

Analyte Sodium

+17

The results reported for sodium in all samples are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects. The result for the diluted sample was higher than the original. Therefore, the sample results may be biased low.

A five fold dilution of the laboratory QC sample is performed in association with the ICP procedure to indicate whether interference exists due to sample matrix effects. If the analyte concentration is sufficiently high (minimally a factor of 50 above the IDL in the original sample), the five fold serial dilution must agree within 10% of the original results after correction for dilution.

Case No.: 29448 SDG No.: MY05T8

Site: KAKA'AKO BROWNSFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Calvin Tanaka, ESAT/LDC

Date: November 14, 2001

Analysis Type: Low Concentration Soil

Concentration in mg/Kg

Samples For Total Metals

Station Location :	SS34	SS04				SA04		•	SB04			SS03 SS12						SA12					
Sample ID :	MY05T8			MY05T9			MY05W0			MY05W1			MY05W2			MY05W3			MY05W4				
Collection Date :	06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001				
					_																		
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com		
ALUMINUM	21000			27500			28900			407		Ι. Τ	17000			8650	_		8280				
ANTIMONY	6:2L	J	BD	1.8L	J ,	BD	2.7L	. J	BD	0.86L	J	BD	14.2L	J	BD	1.3L	j	BD	0.83L	J.	8D		
ARSENIC	12.8	J	DE	4.8	J	DE	9.4	J	DE	3.2	J	DE	7.0	J	DE	· 4.8	J	DE	· · 3.2	J	DE		
BARIUM	261			424			296			-6.3L	· J	В	302			108			135				
BERYLLIUM	0.35L	J	В	1.1L	J	В	0.96L	J	В	0.050U	***		0.79L	J	В	0.37L	J	В	0.43L	J	В		
CADMIUM	0:45L	J	BC	0.53L	J	В	0.66L	J	BC	0.10L	J	В	1.6			0.24L	J	В	0.16L	J	В		
CALCIUM	108000			88500			86700	- WARRING CO.		344000	***************************************		139000	300-10-1-10-0-4		250000	***************************************		311000				
CHROMIUM	91.9	IJ	D	58.3	J	D	80.6	IJ	D	7.0	j	D	74.7	J	D	39.0	J	D	55.6	j	D		
COBALT	12.9L	J	В	26.9		***************************************	30.3	***************************************	•	0.27L	J	В	24.8	SANTON MULTINE		11.2L	J	٠в	12.2				
COPPER	254	J	DE	80.6	J	DE	139	. J	DE	1.6L	j	BDE	552	j	DE	33.1	. "J	DE	30.7	J	DE		
IRON .	68500	***************************************		40300			60400	000000000000000000000000000000000000000		900		. 4040.00	46800	N	**************************************	14900			18200	***************************************			
LEAD	672			191			- 242			0.75			463			79.2			18:9				
MAGNESIUM	9570		***************************************	26600		***************************************	22600			23100			20600			23200	-	944	10600				
MANGANESE	437	IJ	D	676	J	D	772	J	D	29.3	J.	D	714	J	D	293	J.	D	503	. J	D		
MERCURY	0.080L	J	В	0.18	***************************************		0.14			0.060U			0.35		000000000000000000000000000000000000000	0.060∪	***************************************		. 0.060N	************			
NICKEL	89.5	J	D	130	J	D	147	J	D	1.6L	J	BD	113	Ĵ	D	44.7	J	D	40,4	J	D		
POTASSIUM	959L	J	В	5500		***************************************	2500		- 112412 necessions	115L	J	В	2210			436L	J	В	1060L	J	В		
SELENIUM	0.98L	J.	BCD	0.77U	R	Α	0.81U	R	AC	0:81Ü	Ŕ	Α	0.840	R	A	0.78U	R	A	0.810	R	Α		
SILVER	3.1	J	С	1.1L	J	. В	1.7L	J	вс	0.19Ù	322.10		1.3L	J	В	0.18U			0.20L	J	В		
SODIUM	1900	J.	F.	10400	J	F	4900	J	F	3050	J	l F	3910	j	F	1780	j	F	1920	J	F		
THALLIUM	1.1U	J	С	0.89U			0.93U	J	С	0.93U	w.,C20,6++0000000		0.96U			0.90U			0.93U				
VANADIUM	92.5			81.2			110	16		4.2L	J	В	87.5			36.3	1		40.1				
ZINC	507	J	D	254	J	D	308	J	D	5.2	J	D	855	J	D	97.5	J	D	42.1	J	D		
Percent Solids	70:4			87:9			83.9			83.6			81.2			87.1	-		83.8				

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

ANALYTICAL RESULTS Page 2 of 4

Site: KAKA'AKO BROWNSFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Calvin Tanaka, ESAT/LDC

SDG No.: MY05T8

Date: November 14, 2001

Case No.: 29448

Concentration in mg/Kg

Table 1A

Analysis Type: Low Concentration Soil
Samples For Total Metals

Station Location :	SB12			SS27			SA27			SB27			SS19			SS02			SA02		
Sample ID :	MY05W5			MY05W6			MY05W7			MY05W8			MY05W9			MY05Z9			MY0600		
Collection Date :	06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/28/2001		,	06/28/2001		
				.		•							Ĭ								
PARAMETER	Result	Vaí	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	26500			12400		•	18800			21300			8680			18700			15400		
ANTIMONY	1:8L	J	BD	3.0L	J	BD	10.3L	J	BD	35:7	J	D	5.9L	. Ji	BD	5.1L	J	BD	0.94L	j	BD
ARSENIC	13.0	J	DE	7.9	J	DE	18.3	J	DE	40.8	J	DE	4.5	J	DE	9.3	J	DE	4.2	J	DE
BARIUM	491			175			382		,	765			127			422			216		*.3
BERYLLIUM	1.7			0.39L	J	В	0.45L	J	В	· 0.38L	J	В	0.28L	J	В	0.55L	J	В	0.60L	J	В
CADMIUM	0.30L	Ĵ	BC	0.42L	÷J	В	2.0	J	C	1.0L	J	вс	0.87L	J	В	0.66L	J	BC	0.331	j	В
CALCIUM	124000			266000			59400			46700			222000			156000			184000		
CHROMIUM	36.7	J	D	40.5	J	D	81.4	J	D	109	J	Ď	37.3	J	D	78.5	J	D	45.6	J	D
COBALT	35.7			13.4			25.7			30.1			9.0L	j	В	23.3			16.2		
COPPER	49.4	J	DÉ	106	J	DE	774	J	DE	3680	J	DE	101	J.	DE	445	J	DE	55.6	J.	DE
IRON	55000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		29200			119000			136000			17000	***************************************		51100			. 27100		
LEAD	77.1	16.5	47	ii 144			1320			2380			279		73	566			1,11	¥	
MAGNESIUM	46000			26400			12700			9420			19500			20300			19200		
MANGANESE	858	J	D	464	jii	D	856	J	D	1240	J	D.	286	J	D'	693	ı, j	Ď.	464	J	D
MERCURY	0.21			0.070L	J	В	0.090L	J	В	, 0.080L	J	В	0.090L	J.	В	0.10L	J	В	0.060U		
NICKEL	162	J	Ď	59.4	J'	D	151	j	D	402	J	D	40.3	J	D	134	J	D	74.5	ij	D.
POTASSIUM	5310			2520			3450			2780			859L	J	В	1950			2370		
SELENIUM	0.82U	R	AC.	0.82U	R	Α	0.880	R	AÇ	0.87U	R	AC	0.90U	R	Α	0.800	R	AC	0.78∪	R	Α÷
SILVER	1.1L	J	ВС	0.62L	J	В	5.5	J	С	7.3	J	С	. 0.62L	J	В	1.5L	J	вс	0.58L	J	В
SODIUM	9300	Ü	F	4050	J	F	2950	J ·	F	3750	J	F.	2600	Ĵ	F	4080	J	F	5420	J	F
THALLIUM	0.94U	J	С	0.94U			1.0U	J	С	1.0U	J	С	1.0U		- Arminina	0.92U	J	С	0.90U		
VANADIUM	105			41.2			₹ 50:5		5	72.0			35.7			84.7		7	54:6		
ZING	145	J	D .	241	j	. D	1170	J	D	1950	J	D	240	J	D	887	J	D	143	J	D
Percent Solids	82.6			82.6			77.4		1.1	78.0			75.0			84.9			86:8		
Val - Validity, Refer to Data Qualifier	s in Table 1R									D1 D2 etc -	Field Du	ınlicato I	Daire								

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

· Table 1A

Case No.: 29448

Site: KAKA'AKO BROWNSFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Calvin Tanaka, ESAT/LDC

Date: November 14, 2001 . Concentration in mg/Kg

SDG No.: MY05T8

88.5

Analysis Type : Low Concentration Soil
Samples For Total Metals

N/A

90.2

Station Location SB02 SA22 SB22 SS09 SS07 SS08 Lab Blank MY0602 MY0603 PBS Sample ID MY0601 MY0606 MY0607 MY0608 06/28/2001 06/28/2001 Collection Date 06/28/2001 06/28/2001 06/28/2001 06/28/2001 PARAMETER Val Com Result Result Val Com Result Val Com Result Val Com Result Val Com Result Val Com Result Val Com ALUMINUM 35500 13200 10300 21700 13600 11400 33.6U 4.2L ANTIMONY 1.5L BD 1.9L 1.2L J 9.4L BD 18.5 0160U J BD BD. J BD. J D ARSENIC 3.9 DE 6.2 J DE 2.6 DE 7.1 J DE 7.7 J DE 7.0 J DE 0.800 BARIUM 510 117 99.9 494 758 951 0.34U BERYLLIUM 1.6 0.49L В 0.38L В 1.0L J В 0.66L J В 0.44L J В 0.040U CADMIUM 0.29L В 0.37L B 0.13L В 0.69L J В 2.3 2.1 0.060U J 58300 130000 CALCIUM 213000 152000 205000 259000 27.3U 52.6 0.140 CHROMIUM 48.8 J f D J D 31.4 29.6 D 37.1 J D 26.6 * D COBALT 27:5 16.7 0.22U 11.3L J В 20.1 16.6 11.6 DE COPPER 68.7 132 DE 34.6 DE 179 j J DĒ 474 J DE 225 J DE 0.14U IRON 36600 25000 17300 29600 33700 16000 10.9U LEAD 122 107 -37.7 1270 1540 14700 -0.30Ù MAGNESIUM 26000 14800 23800 26600 25300 22100 26.4U MANGANESE 657 D 454 333 584 D 0.080U D 640 ٠. ا D 402 J, J MERCURY 0.22 0.060U 0.75 0.070L j В 0:060L 0.050U 0.20 44.8 NICKEL 115 ل 70.7 D 87.3 J D 96.5 j : D 58.8 D 0.300 9390 10601 POTASSIUM J. В 1250L J В 5370 3400 3460 3.6L .1 В 0.770 0.85U SELENIUM ∙0.85U R Α R A A 0.76U 0.780 R 0.75U R 0.680 R - A SILVER 0.94L J В 0.56L J В 0.34L J В 1.7L J В 3.7 1.0L J В 0.16U F 5470 6620 SODIUM 22400 - J 3170 J 11200 J F 4970 F 63.2L В THALLIUM 0.98U U88.0 0.97U 0.87U 0.891 0.86U 0.78U 50.2 35.4 VANADIUM 52.3 46,1 40.5 34.9 0.180 ZINC 162 D 202 D 55.1 D 617 D 1820 D 1560 J Đ 0.35L В

80.1

Val - Validity. Refer to Data Qualifiers in Table 18.

Percent Solids

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

'MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

89.7

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

87.6

ANALYTICAL RESULTS Page 4 of 4

Table 1A

Site: KAKA'AKO BROWNSFIELDS Lab: SENTINEL, INC. (SENTIN) Reviewer: Calvin Tanaka, ESAT/LDC

eviewei . Caiviii railaka, ESAT/EDC

Case No.: 29448

Date: November 14, 2001 Concentration in mg/kg

SDG No.: MY05T8

Analysis Type: Low Concentration Soil

Samples For Total Metals

Sample ID :	MDL			CRDL .																	
PARAMETER	Result	Val	Com	Result	Vai	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	33.6	_		40																	
ANTIMONY	0.6			12		3								4							*
ARSENIC	0.8			2																	
BARIUM	0:34			40									7							2.5	
BERYLLIUM	0.04			1																	
CADMIUM	0.06			1											1			1			
CALCIUM	27.3			1000																	
CHROMIUM	0.14			- 2	E. L.																
COBALT ·	0.22			10													·		•		
COPPER	0.14	•		5				***************************************	1			1									
IRON	10.9			20										l			1			1	1
LEAD	0:3			0.6																1.00	
MAGNESIUM	26.4			1000																	
MANGANESE	0.08			3		1	1								- 1						
MERCURY				0.04				.000/0000000000000000000000000000000000													
NICKEL	0.3			8																	
POTASSIUM	3.1	H		1000				200000000000000000000000000000000000000									<u> </u>			,	
SELENIUM 1	0.68	()		. 1									1								
SILVER	0.16			2																	
SODIUM	26.2			1000																	
THALLIUM	0.78			2																	
VANADIUM	0:18	4		. 10						104											
ZINC	0.16			4									<u> </u>							torianno	

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

- U The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- L Indicates results which fall between the sample detection limit and the CRDL. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence <u>or</u> absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

In Reference to Case 29448 SDG No.: MY05P8, MY05R8, MY05T8, MY05X0, MY05Y2, and MY05Y8

Contract Laboratory program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log
Date of Call:
Laboratory Name: <u>Sentinel, Inc. (SENTIN)</u>
Lab Contact: Melvin Kilgore
Region:9
Regional Contact: Steve Remaley, CLP PO
ESAT Reviewer: Stan Kott, ESAT/ICF-LDC
Call Initiated By: Laboratory X Region
In reference to data for the following sample(s): SDG No.: MY05P8, MY05R8, MY05T8, MY05X0, MY05Y2, and MY05Y8
Summary of Questions/issues Discussed:
The following item was noted during the review of this sample delivery group (SDG). Please respond within 7 days as specified in Exhibit A, Section II, E. of the ILM04.0 Statement of Work (SOW). Send response and resubmissions to ICF Consulting, Inc./Laboratory Data Consultants, Inc., Environmental Services Assistance Team, Region 9, 1337 S. 46th Street, Building 201, Richmond, CA 94804, FAX 510 412-2304.
 The cover pages for both ICP and CVAA analyses provide only reference numbers for the standard solutions used. However, Region 9 requests the following information for all standards (calibration and QC) used: expiration date of standard, preparation date, lot number, and standard sources. Pleas provide one copy of the above listed data for both ICP and CVAA.
Summary of Resolution: To be determined.
Regional Contact Signature Date of Resolution

ICF Consulting / Laboratory Data Consultants

Environmental Services Assistance Team, Region 9

1337 South 46th Street, Building 201, Richmond, CA 94804-4698

Phone: (510) 412-2300 Fax: (510) 412-2304

MEMORANDUM

TO:

Tom Mix do Sun Hausen

Brownfields Project Officer Brownfields Team, SFD-1-1

THROUGH:

Rose Fong

RF

ESAT Project Officer

Quality Assurance (QA) Program, PMD-3

FROM:

Doug Lindelof

Data Review and QA Document Review Task Manager

Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68-W-01-028

Task Order: B01

Technical Direction No.: B0105043 Amendment 1

DATE:

November 9, 2001

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE:

Kaka'ako BF

SITE ACCOUNT NO.:

09 00 LA00

CERCLIS ID NO.:

None Provided

CASE NO.:

29448 MY05Y2

SDG NO.: LABORATORY:

Sentinel, Inc. (SENTIN)

ANALYSIS:

Dissolved & Total Metals

SAMPLES:

9 Water Samples (see Case Summary)

COLLECTION DATE:

June 28, 2001

REVIEWER:

Kendra DeSantolo, ESAT/Laboratory Data Consultants (LDC)

The comments and qualifications presented in this report have been reviewed by the EPA Task Order Project Officer (TOPO) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Rose Fong (QA Program/EPA) at (415) 744-1534;

Attachment

cc: Edward Messer, CLP PO USEPA Region 4 Steve Remaley, CLP PO USEPA Region 9

ESAT File

CLP PO: [X]FYI []Attention []Action

SAMPLING ISSUES: [X]Yes []No

Data Validation Report

Case No.:

29448

SDG No.: MY05Y2

Site:

Kaka'ako BF

Laboratory:

Sentinel, Inc. (SENTIN)

Reviewer:

Kendra DeSantolo, ESAT/LDC

Date:

November 9, 2001

I. Case Summary

SAMPLE INFORMATION:

Samples: MY05Y2, MY05Y3, MY05Y4, MY05Y7, MY05Z1, MY0604,

MY0605, MY0614, and MY0617

Concentration and Matrix:

Low Concentration Water

Analysis:

Dissolved and Total Metals

SOW: ILM04.1 June 28, 2001

Collection Date: Sample Receipt Date:

July 2, 2001

Preparation Date:

July 6, 2001

Ânalysis Date:

July 6, 7, and 10, 2001

FIELD OC:

Field Blanks (FB):

Not Provided

Equipment Blanks (EB):

MY0617

Background Samples (BG):

Not Provided

Field Duplicates (D1):

MY05Y2 and MY05Y3

Method Blanks and Associated Samples:

PBW:

Samples listed above

LABORATORY QC:

Matrix Spike:

MY05Y7S

Duplicates:

MY05Y7D

ICP Serial Dilution:

MY05Y7L

ANALYSIS:

Dissolved and Total Metals

Sample Preparation

Analyte

and Digestion Date

Analysis Date

ICP Metals

July 6, 2001

July 7 and 10, 2001

Mercury

July 6, 2001

July 6, 2001

Percent Solids

Not Applicable

CLP PO ACTION:

None

CLP PO ATTENTION:

None

SAMPLING ISSUES:

(1) Sample MY05Z1 arrived at the laboratory with a measured pH of 4. (2) The field quality control (QC) samples were not sent blind to the laboratory. (3) Equipment blank sample MY0617 was not filtered in the field. The results for this unfiltered sample may not adequately reflect the results of the filtered samples of this SDG. The effect on data quality is not known.

ADDITIONAL COMMENTS:

The standards preparation data was not included in the data package. This information was requested from the laboratory but has not been received to date. Data quality is not likely to be affected and this report is considered final. Refer to the attached telephone record log (TRL) for details.

Sample MY05Z1 arrived at the laboratory with a measured pH of 4. The laboratory contacted the Region 9 office and was instructed to adjust the pH and proceed with analysis of the sample. Since the pH preservation of this sample did not meet the criterion stated in the statement of work (SOW), the sample results were qualified as estimated. Refer to Comment B in the Validity and Comments section below.

All samples (except MY0617) were filtered through a 0.45 µm filter and preserved in the field.

All method requirements specified in the EPA Contract Laboratory Program (CLP) Inorganic SOW have been met.

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B.

This report was prepared in accordance with the following documents:

- ESAT Region 9 Standard Operating Procedure 906, Guidelines for Data Review of Contract Laboratory Program Analytical Services (CLPAS) Inorganic Data Packages;
- Multi-Media, Multi-Concentration, Inorganic Analytical Service for Superfund (ILM04.1); and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

II. Validation Summary

The data were evaluated based on the following parameters:

Parameter	<u>Acceptable</u>	Comment
 Data Completeness Sample Preservation and Holding Times Calibration Initial Calibration Verification Continuing Calibration Verification Calibration Blank 	Yes No Yes	В
d. CRDL Standard 4. Blanks a. Laboratory Preparation Blank b. Field Blank c. Equipment Blank	Yes	
5. ICP Interference Check Sample Analysis	Yes	
6. Laboratory Control Sample Analysis	Yes	
7. Spiked Sample Analysis	No	С
8. Laboratory Duplicate Sample Analysis	Yes	
9. Field Duplicate Sample Analysis	No	E
 10. GFAA QC Analysis a. Duplicate Injections b. Analytical Spikes c. Method of Standard Addition 	N/A	
11. ICP Serial Dilution Analysis	· No	\mathbf{D}
12. Sample Quantitation	Yes	Α
13. Sample Result Verification	Yes	•

N/A = Not Applicable

III. Validity and Comments

- A. The following results are estimated and flagged "J" in Table 1A.
 - All results above the instrument detection limit but below the contract required detection limit (denoted with an "L" qualifier)

Results above the instrument detection limit (IDL) for waters but below the contract required detection limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- B. The following results are estimated due to inadequate sample preservation and flagged "J" in Table 1A.
 - All analytes in sample MY05Z1

This water sample did not meet the SOW sample preservation criterion. The sample was not adequately preserved in the field to a pH of less than 2 as shown below.

Sample Number	<u>рН</u>
MY05Z1	4

Sample results may be biased low and, where nondetected, false negatives may exist.

- C. The following results are estimated because of a matrix spike recovery result outside method OC limits and flagged "J" in Table 1A.
 - Selenium in all samples (except MY0617)

The matrix spike recovery result for selenium in QC sample MY05Y7S did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for selenium is presented below and is based on an ideal recovery of 100%.

<u>Analyte</u>	MY05Y7S % Recovery	MY05Y7S <u>% Bias</u>
Selenium	36	-64

Results above the IDL are considered quantitatively uncertain. The results reported for selenium in all samples (except MY0617) may be biased low and, where nondetected, false negatives may exist.

According to the Inorganic SOW, when the pre-digestion spike recovery results for ICP analytes (except silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. The following post-digestion spike recovery result was obtained.

MY05Y7A
Post-Digestion Spike
<u>% Recovery</u>

Selenium

Analyte

78

Since the post-digestion spike recovery was acceptable, the low pre-digestion spike recovery result (36%) obtained for selenium may indicate poor laboratory technique or matrix effects which may interfere with accurate analysis, depressing the analytical result.

The matrix spike sample analysis provides information about the effect of the sample matrix on the digestion and measurement methodology.

- D. The following results are estimated because of an ICP serial dilution result outside method QC limits and flagged "J" in Table 1A.
 - Potassium in all samples (except MY0617)

The percent difference of the ICP serial dilution analysis of sample MY05Y7L did not meet the 10% criterion for the analytes shown below.

Analyte MY05Y7L % Difference
Potassium +27

The results reported for potassium in all samples (except MY0617) are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects. The result for the diluted sample was higher than the original. Therefore, the sample results may be biased low.

A five fold dilution of the laboratory QC sample is performed in association with the ICP procedure to indicate whether interference exists due to sample matrix effects. If the analyte concentration is sufficiently high (minimally a factor of 50 above the IDL in the original sample), the five fold serial dilution must agree within 10% of the original results after correction for dilution.

E. A difference of $44 \mu g/L$ was obtained for zinc in the analysis of field duplicate pair samples MY05Y2 and MY05Y3. The field duplicate results are expected to vary more than laboratory duplicates (\pm CRDL criteria for precision) since sampling variability is included in the measurement. The effect on the quality of the data is not known.

The analysis of field duplicate samples is a measure of both field and analytical precision. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix, high levels of solids in the sample, or poor sampling or laboratory technique.

Case No.: 29448

SDG No.: MY05Y2

Site: KAKA'AKO BROWNFIELDS Lab: SENTINEL, INC. (SENTIN) Reviewer: Kendra DeSantolo, LDC/ESAT

Date: November 9, 2001

Analysis Type: Low Concentration Water Samples For Dissolved Metals

Concentration in ug/L

Table 1A

Station Location : Sample ID : Collection Date :	MW02 MY05Y2 06/28/2001	MY05Y3 D1			MW01 MY05Y4 06/28/2001			MY05Y7			MW04 MY05Z1 06/28/2001			MW06 MY0604 06/28/2001			MVV08 MY0605 06/28/2001				
				1 1/4 1 2									<u> </u>					-	•		-
	Result	Val		Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	172L	J	A	168Ų			168U			168∪			168U	J	B	168U			168U		
ANTIMONY	3.00			3,00		•	3,00			3.0U			3.00	J	В	4.0L	J	A	3.00		
ARSENIC	4.1L	J	Α	4,0U	Name (Constant)		4.0U			4.0U		***********	4.0U	j	В	6.3L	J	Α	4.0U	700000000000000000000000000000000000000	
BARIUM	292			130L	, "J	A	248			120L	J	A	317	J	В	134L	J	* A	400		
BERYLLIUM	0.20U	***************************************	COMMUNICATION CONTRACTOR	0.20∪			0.20∪	1011 oz 1010 0 1000 0 1000		0.20U	- Name - Constitution	CONT. AND CONT. AND CONT.	0.20U	J	В	0.20U			0.20U		
CADMIUM	0.30U			0.30U			0.300			0.30U			0.300	IJ	B.	0.65L	Ţ	A	0.30U		
CALCIUM	384000	****	***************************************	379000			407000			473000			456000	J	В	372000			280000		
CHROMIUM	0.70Ü			0.70U			0.700			0.70U	- 1		0.700	J	В	0.700			0.70U		
COBALT	1.1U			1.10			1.1U			1.1ປ			1.10	J	В	2.6L	J	Α	1.1U		
COPPER	0.70U			0.70U			0.700			0.700			0.700	J	В	22:3L	J	Α	0.70		
IRON	54.6U			54.6U			162			54.6U			54.6U	J	В	536			54.6U		
LEAD	1.5U			1.5U			1.5U			1.5U	- 1		1:5U	IJ	В	1.5U			1.5U		
MAGNESIUM	1190000			1230000			1210000			1280000			1200000	J	В	1210000			886000		
MANGANESE	0.400			0.400	4		0:40U			0.40U			0.40U	J	В	619			0.40U		
MERCURY	0.10ป			0.10U			0.10U			0.10U		******	0.10U	J	В	0.10∪	l	-	0.10U		7440774444447A
NICKEL	1.5Ü			1.50			1.5U			1.5U			1!5U	J	В	15.6L	J	А	1.5U		
POTASSIUM	370000	J	Ď	369000	J	D	368000	J	D	380000	J	D	361000	J	BD	364000	J	D	310000	J	D
SELENIUM	3.4Ü	J	·C	3.40	J	C -	3.4U	J	C	3.4U	· J	С	3.40	J	BC	3.4U	J	C	3.4U	J	. C
SILVER	0.80∪	A60.00000000000000000000000000000000000		0.80U	A44404444444	200000000000000000000000000000000000000	0.80U			0,80U		***************************************	0,80U	J	В	0.80U			0.80U		
SODIUM	10500000			10900000			10700000			11200000			10500000	J	В	10700000			8090000		
THALLIUM	3.9∪		***************************************	3.9∪			4.3L	J.	A	3.9∪		***************************************	3.9∪	J	В	3.9U			3.9Ü		
VANADIUM	2:1L	J	Α	1.6L	J	Α	2.9L	-J- ³	A.	0.90U			0.900	J	В	0.90U			5.8L	J	Α
ZINC	62,5		E	18,2L	J	ΑE	37.7	***************************************		4.1L	J	A	10.0L	J	AB	112			52.5		
											,								5		
Val. Validity Bofos to Data Qualifier		***************************************		***************************************	***************************************	***************************************	2200.00	******************		D1 D2 etc	Field Du				T		4				

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL - Instrument Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

Site: KAKA'AKO BROWNSFIELDS

Case No.: 29448

Lab: SENTINEL, INC. (SENTIN) Reviewer: Kendra DeSantolo, LDC/ESAT

> Date: November 9, 2001 Concentration in ug/L

Analysis Type: Low Concentration Water Samples For Dissolved Metals

	_																				
Station Location:	MW07			QW4			Lab Biank														
Sample ID :	MY0614			MY0617 E	В.		PBW			IDL			CRDL								ļ
Collection Date :	06/28/2001			06/28/2001																	ľ
																					لـــــــا
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	168U			168U	0.29000 xxxx		168U			168			200								
ANTIMONY	3.0Ü			3,00			3.00			3.0			60.0								
ARSENIC	4.0U	560000000 7 05		4.0U			4.0U			4.0		- Charles	10.0	Badanan and a said							200000000000000000000000000000000000000
BARIUM	180L	j	Α	1.70			1.7U			1.7			200								
BERYLLIUM	0.20U		NAMES AND POST OF	0.20U	***************************************	COS SOMEONIO	0.20U	CONTRACTOR OF THE PARTY OF THE	ilinoonaa noonaa	0.20			5.0	(managemental)	announce Worker		COMMON MARK TO		100000000000000000000000000000000000000	ananasaana aa	described to the second
CADMIUM	0:30⊍,			0.30U			0.30U			0,30		1	5.0						1.0		
CALCIUM	241000			171L	J	Α	136U			136		***************************************	5000								
CHROMIUM	0.700			0:700			0.700			0.70			10.0								
COBALT	1.3L	J	Α	1.1U			1.1U			1.1			50.0								
COPPER	2:1L	ĵ,	Α	0.70∪			0.700			0.70			25.0				1				
IRON	54.6U			54.6U			54.6U			54.6			100	I			i .				
LEAD	1.5U			1.50	4		1.5U			1.5			3.0					8.1			
MAGNESIUM	677000			230L	J	Α	132U			132			5000 ·								
MANGANESE	19:5			0.40Ü			0.40U			0.40			15.0								4000
MERCURY	0.10U			0.10U			0.10U			0.10			0.20								
NICKEL	5.5L	J	A	1.50			1/5U			1.5			40.0								
POTASSIUM	248000	J	D	1360L	J	Α	15,4U			15.4			5000			•					
SELENIUM	3.4∪,	J	C	3,4U			3.40			3.4			5.0								
SILVER	0.80U			0.80U			0.80U			0.80			10.0						•		
SODIUM	6140000			2540L	j	Α	139L	/ J	Α	131			5000								
THALLIUM	3.9U			3.9U			3.9∪			3.9			10.0								1
VANADIUM	5.3L	J	A	0:900			0.900			0.90			50.0								
ZINC	37.6			7.9L	J	Α	0.80U		•	0.80			20.0			***************************************					
	1.0		•														4				

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL - Instrument Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, February 1994.

- U The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- L Indicates results which fall between the sample detection limit and the CRDL. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence <u>or</u> absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

In Reference to
Case 29448 SDG No.: MY05P8, MY05R8, MY05T8,
MY05X0, MY05Y2, and
MY05Y8

Contract Laboratory program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log
Date of Call:
Laboratory Name: Sentinel, Inc. (SENTIN)
Lab Contact: Melvin Kilgore
Region: 9
Regional Contact: <u>Steve Remaley, CLP PO</u>
ESAT Reviewer:Stan Kott, ESAT/LDC
Call Initiated By: Laboratory _X Region
In reference to data for the following sample(s): <u>SDG No.: MY05P8, MY05R8, MY05T8, MY05X0, MY05Y2, and MY05Y8</u>
Summary of Questions/issues Discussed:
The following item was noted during the review of this sample delivery group (SDG). Please respond within 7 days as specified in Exhibit A, Section II, E. of the ILM04.0 Statement of Work (SOW). Sen response and resubmissions to ICF Consulting, Inc./Laboratory Data Consultants, Inc., Environmental Services Assistance Team, Region 9, 1337 S. 46th Street, Building 201, Richmond, CA 94804, FAX 53412-2304.
1. The cover pages for both ICP and CVAA analyses provide only reference numbers for the standard solutions used. However, Region 9 requests the following information for all standards (calibration and QC) used: expiration date of standard, preparation date, lot number, and standard sources. Plea provide one copy of the above listed data for both ICP and CVAA.
Summary of Resolution: To be determined.
Regional Contact Signature Date of Resolution

ICF Consulting / Laboratory Data Consultants

Environmental Services Assistance Team, Region 9

1337 South 46th Street, Building 201, Richmond, CA 94804-4698

Phone: (510) 412-2300 Fax: (510) 412-2304

MEMORANDUM

TO:

Tom Mix

Brownfields Project Officer Brownfields Team, SFD-1-1

THROUGH:

Rose Fong

ESAT Project Officer

Quality Assurance (QA) Program, PMD-3

FROM:

Doug Lindelof

Data Review and OA Document Review Task Manager Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68-W-01-028

Task Order: B01

Technical Direction No.: B0105034 Amendment 1

. DATE:

October 17, 2001

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

Kaka'ako BF

SITE ACCOUNT NO.: 09 00 LA00

CERCLIS ID NO.:

None

CASE NO.:

29448

SDG NO.:

MY05R8

LABORATORY:

Sentinel, Inc. (SENTIN)

ANALYSIS:

Total Metals

SAMPLES:

19 Soil and 1 Water Samples (see Case Summary)

COLLECTION DATE: June 26, 2001

REVIEWER:

Calvin Tanaka, ESAT/Laboratory Data Consultants (LDC)

The comments and qualifications presented in this report have been reviewed by the EPA Task Order Project Officer (TOPO) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Dawn Richmond (QA Program/EPA) at (415) 744-1494 or Rose Fong (QA Program/EPA) at (415) 744-1534.

Attachment

cc: Edward Messer, CLP PO USEPA Region 4

Steve Remaley, CLP PO USEPA Region 9

ESAT File

CLP PO: [X]FYI []Attention []Action

SAMPLING ISSUES: [X]Yes []No

B0105034-0676/29448MY05R8RPT.wpd

In Reference to
Case 29448 SDG No.: MY05P8, MY05R8, MY05T8,
MY05X0, MY05Y2, and
MY05Y8

Contract Laboratory program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log
Date of Call:
Laboratory Name: Sentinel, Inc. (SENTIN)
Lab Contact: Melvin Kilgore
Region:9
Regional Contact: Steve Remaley, CLP PO
ESAT Reviewer: Stan Kott, ESAT/ICF-LDC
Call Initiated By: Laboratory X Region
In reference to data for the following sample(s): SDG No.: MY05P8, MY05R8, MY05T8, MY05X0, MY05Y2, and MY05Y8
Summary of Questions/issues Discussed:
The following item was noted during the review of this sample delivery group (SDG). Please respond within 7 days as specified in Exhibit A, Section II, E. of the ILM04.0 Statement of Work (SOW). Send response and resubmissions to ICF Consulting, Inc./Laboratory Data Consultants, Inc., Environmental Services Assistance Team, Region 9, 1337 S. 46th Street, Building 201, Richmond, CA 94804, FAX 510 412-2304.
1. The cover pages for both ICP and CVAA analyses provide only reference numbers for the standard solutions used. However, Region 9 requests the following information for all standards (calibration and QC) used: expiration date of standard, preparation date, lot number, and standard sources. Pleas provide one copy of the above listed data for both ICP and CVAA.
Summary of Resolution: To be determined.
Regional Contact Signature Date of Resolution

Data Validation Report

Case No.:

29448

SDG No.:MY05R8

Site:

Kaka'ako BF

Laboratory:

Sentinel, Inc. (SENTIN)

Reviewer:

Calvin Tanaka, ESAT/ICF-LDC

Date:

October 17, 2001

I. Case Summary

SAMPLE INFORMATION:

Samples:

Soil: MY05R8, MY05R9, MY05S0 through MY05S9, MY05T0

through MY05T5, and MY05T7

Water: MY05T6

Concentration and Matrix:

Low Concentration Soil and Water

Total Metals Analysis:

> SOW: ILM04.1

June 26, 2001 Collection Date:

Sample Receipt Date: June 29, 2001

Preparation Date: July 12 and 13, 2001 Ânalysis Date: July 15, 16, and 17, 2001

FIELD QC:

Field Blanks (FB):

Not Provided

Equipment Blanks (EB): MY05T6 Background Samples (BG):

Not Provided Field Duplicates (D1): MY05S7 and MY05S8

(D2): MY05S9 and MY05T0

(D3): MY05T1 and MY05T2

Method Blanks and Associated Samples:

PBS: MY05R8, MY05R9, MY05S0 through MY05S9, MY05T0

July 15, 16, and 17, 2001

through MY05T5, and MY05T7

PBW: MY05T6

LABORATORY QC:

Matrix Spike: **MY05S4S**

Duplicates: MY05S4D

ICP Serial Dilution: MY05S4L

ANALYSIS: Total Metals

Sample Preparation

Analyte and Digestion Date

Analysis Date

July 13, 2001 July 16, 2001 Mercury

Percent Solids July 11, 2001

July 12, 2001

CLP PO ACTION:

None

CLP PO ATTENTION:

None

ICP Metals

SAMPLING ISSUES:

The cooler containing all of the samples arrived at the laboratory with a temperature of 8.0° C. This temperature exceeds the temperature of $4\pm2^{\circ}$ C specified in the Statement of Work (SOW). Since the water sample was preserved to a pH less than 2, no adverse effect on the quality of the data is expected. Although the soil samples were received by the laboratory more than 24 hours after the last sample was collected, the cooler temperature did not exceed 20° C and no adverse effect on the quality of the data is expected.

ADDITIONAL COMMENTS:

The standards preparation data was not included in the data package. This information was requested from the laboratory but has not been received to date. Data quality is not likely to be affected and this report is considered final. Refer to the attached telephone record log (TRL) for details.

All method requirements specified in the EPA Contract Laboratory Program (CLP) Inorganic Statement of Work (SOW) have been met.

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B.

This report was prepared in accordance with the following documents:

- ESAT Region 9 Standard Operating Procedure 906, Guidelines for Data Review of Contract Laboratory Program Analytical Services (CLPAS) Inorganic Data Packages;
- Multi-Media, Multi-Concentration, Inorganic Analytical Service for Superfund (ILM04.1); and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

II. Validation Summary

The data were evaluated based on the following parameters:

<u>Parameter</u>	<u>Acceptable</u>	Comment
 Data Completeness Sample Preservation and Holding Times Calibration Initial Calibration Verification Continuing Calibration Verification Calibration Blank CRDL Standard 	Yes Yes Yes	
4. Blanks a. Laboratory Preparation Blank b. Field Blank c. Equipment Blank	Yes	
5. ICP Interference Check Sample Analysis	No	В
6. Laboratory Control Sample Analysis	Yes	
7. Spiked Sample Analysis	No	С
8. Laboratory Duplicate Sample Analysis	No	D
9. Field Duplicate Sample Analysis	No	· F
 10. GFAA QC Analysis a. Duplicate Injections b. Analytical Spikes c. Method of Standard Addition 	N/A	
11. ICP Serial Dilution Analysis	No	E
12. Sample Quantitation	Yes	\mathbf{A}
13. Sample Result Verification	Yes	

N/A = Not Applicable

III. Validity and Comments

- A. The following results are estimated and flagged "J" in Table 1A.
 - All results above the instrument detection limit (IDL) for waters or the method detection limit (MDL) for soils, but below the contract required detection limit (CRDL) (denoted with an "L" qualifier)

Results above the IDL for waters or the MDL for soils, but below the CRDL are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in analytical precision near the limit of detection.

- B. The following results are estimated because of ICP interelement interference problems. The results are flagged "J" in Table 1A.
 - Cadmium, selenium, silver, and thallium in sample MY05T7

Results for the above listed analytes and sample were reported from undiluted analysis that contained an iron concentration above that stated for the ICP interference check sample (ICS). Therefore, the applied interelement correction (IEC) factors may not compensate sufficiently for the interference. The results for the above listed analytes may be biased low and false negatives may exsist.

The ICP ICS solutions A and AB are analyzed to determine the effects of high concentrations of interfering elements on each analyte determined by ICP. Solution A consists of the interferents (Al, Ca, Fe, and Mg), and Solution AB consists of the analytes mixed with the interferents.

When the estimated concentration produced by the interfering element is greater than twice the CRDL and also greater than 10% of the reported concentration of the affected element, the results of the affected elements are estimated.

- C. The following results are estimated because of matrix spike recovery results outside method QC limits and flagged "J" in Table 1A.
 - Antimony, copper, and thallium in all samples except MY05T6

The matrix spike recovery results for antimony, copper and thallium in QC sample MY05S4S did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

Analyte	MY05S4S <u>% Recovery</u>	MY05S4S <u>% Bias</u>
Antimony	58	-42
Copper	130	+30
Thallium	67	-33

Results above the MDL are considered quantitatively uncertain. The results reported for antimony and thallium in all samples except MY05T6 may be biased low and, where nondetected, false negatives may exist. The results reported for copper in all samples except MY05T6 may be biased high and false positives may exist.

According to the Inorganic SOW, when the pre-digestion spike recovery results for ICP analytes (except silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. The following post-digestion spike recovery results were obtained.

Analyte	MY05S4S Post-Digestion Spike <u>% Recovery</u>
Antimony	104
Copper	104
Thallium	45

Since the post-digestion spike recoveries were acceptable for antimony and copper, the low pre-digestion spike recovery result obtained for antimony and the high pre-digestion spike recovery result obtained for copper may indicate sample nonhomogeneity, poor laboratory technique or matrix effects which may interfere with accurate analysis, enhancing or depressing the analytical result.

Since both the post- and pre-digestion spikes did not meet the QC criteria for thallium, matrix effects may be present in the sample digestate which may depress the analyte signal during analysis.

The matrix spike sample analysis provides information about the effect of the sample matrix on the digestion and measurement methodology.

- D. The following results are estimated because of laboratory duplicate results outside method QC limits and flagged "J" in Table 1A.
 - Calcium in all samples except MY05T6

Laboratory duplicate results did not meet the ±35 relative percent difference (RPD) criteria for precision as listed below.

<u>Analyte</u>	•	MY05S4D Lab. Dup. <u>RPD</u>
Calcium		36

The results reported for calcium in all of the samples except MY05T6 are considered quantitatively uncertain.

Duplicate analyses demonstrate the analytical precision obtained for each sample matrix. The imprecision between duplicate results may be due to sample nonhomogeneity or poor laboratory technique.

- E. The following results are estimated because of ICP serial dilution results outside method QC limits and flagged "J" in Table 1A.
 - Calcium, copper, and potassium in all samples except MY05T6

The percent difference of the ICP serial dilution analysis for sample MY05S4L did not meet the 10% criterion for the analytes shown below.

<u>Analyte</u>	MY05S4L <u>% Difference</u>
Calcium	-78 +16
Copper Potassium	+11

The results reported for calcium in all samples except MY05T6 are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects. The serial dilution for calcium was performed on a 10x dilution of sample MY05S4L. The result for the diluted sample was lower than the original, but because of a problem analyzing this sample a bias for calcium could not be determined.

The results reported for copper and potassium in all samples except MY05T6 are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects. The results for the diluted sample were higher than the original. Therefore, the results may be biased low.

A five fold dilution of the laboratory QC sample is performed in association with the ICP procedure to indicate whether interference exists due to sample matrix effects. If the analyte concentration is sufficiently high (minimally a factor of 50 above the IDL in the original sample), the five fold serial dilution must agree within 10% of the original results after correction for dilution.

F. In the analysis of the field duplicate pairs, the following RPD and differences were obtained for the analytes listed below.

<u>Analyte</u>	MY05S7 D1 MY05S8 D1 <u>RPD</u>	MY05S9 D2 MY05T0 D2 <u>RPD</u>	MY05T1 D2 MY05T2 D2 RPD/Result Difference
Copper	59		/ i0.7
Copper Lead	68	58	112 /
Manganese	 '		65 /
Zinc			54 /

The field duplicate results are expected to vary more than laboratory duplicates (± 35 RPD or $\pm 2 \times \text{CRDL}$ criteria for precision) since sampling variability is included in the measurement. The effect on the quality of the data is not known.

The analysis of field duplicate samples is a measure of both field and analytical precision. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix, sample nonhomogeneity, or poor sampling or laboratory technique.

Case No.: 29448

Site: KAKA'AKO BROWNFIELDS Lab: SENTINEL, INC. (SENTIN)

Reviewer: Calvin Tanaka, ESAT/LDC Date: October 17, 2001

SDG No.: MY05R8

Analysis Type: Low Concentration Soil

Concentration in mg/Kg

Samples For Total Metals

Station Location :	SS35			SA35	•		SB35			SS38			SA38			SB38		•	SS37		
Sample ID :	MY05R8		-	MY05R9			MY05S0			MY05S1			MY05S2			MY05S3			MY05S4		
Collection Date :	06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001		
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	14900			8180			10400			8280			11100		·	8860			6140	_	
ANTIMONY	1.2L	J	AC	0.65L	J;	AC	1.4L	° J	AC	0.92L	j	AC.	0.75L	J	AC	= 2.5L	j	AC	0.580	j.	С
ARSENIC	0.64L	J	Α	1.6L	J	Α	2.0L	j	Α	2.3	1	1	6.1			8.7			3.9		
BARIUM	- 8.3L	Ú	Α-	15.3L	J	. A	+ 7.1L	J	Α	40.0L	J	A	85.0		100	126			77.3	-	, ,
BERYLLIUM	0.060U			0.070U			0.070U			0.070U			0.070U			0.070U			0.070U		
CADMIUM	0.13U			0:13U			0.130			0.14U			0.140			0.14U			0.14U		
CALCIUM	56500	J	DE	146000	j	DE.	135000	J	DE	174000	J	DE	184000	J	DE	281000	J	DE	278000	J	DE
CHROMIUM	58.5			36.2			43.0			32.4			35.8			27.0			17.5		
COBALT	21.6			13.3			14.4			9.0L	· J	Α	10.7L	J	Α	11.6L	J	Α	4.1L	J	Α
COPPER	90.7	Ĵ	CE	55:5	J	CE	57/3	J,	CE	. 27.4	J	CE	33.5	J	CE	227	J	ĊE	19.9	J	CE
IRON	29800			18300			21200			10900			17900	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		29100			8830		
LEAD	3.8			5.3			5.2			33.0			72.5			317			72.2		
MAGNESIUM	16600			17100			20000			18600			19100			24800			21800		
MANGANESE	364			243			235			316			241			258			167		
MERCURY	0.050U			0.060U			0.060U			0.060U			0.37			0.38	•		0.060U		
NICKEL	56.6			92.7			37.9			30.7			44.0			58.0			25.6		
POTASSIUM	162L	J	AE	353L	J	ΑĖ	385L	J	AE	295L	J	AE	1210	J	E	1270	J	E	481L	J	AE
SELENIUM	0:48L	J	Α	0.44U	1		0.44U			0.45U			0.46U			0.48U			0.48L	J	Α
SILVER	0.11U			0.11U			0.11U			0.11U			0.12U			0.12U			0.12U		
SODIUM	1120			1980			2610			2840			5330			6580			2890		
THALLIUM	0.72U	J	С	0.74U	J	С	0.75∪	J	Ç	0.77∪	J	С	0.78U	J	С	0.81U	J	С	0.79U	J	С
VANADIUM	61.2			35.8			48.2			23.0			37.1			33.1			21.9		
ZINC	58.9			38.3			36.3			38.1			78.2			251			57.6		
Percent Solids	92.4			90.8		¥	88.7			87.2			86,7			84.1			86.4		
Val - Validity Refer to Data Qualifier	re in Table 1B									D1 D2 etc -	Field Du	nlicato I	Daire								

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

Case No.: 29448 SDG No.: MY05R8

Site: KAKA'AKO BROWNFIELDS Lab: SENTINEL, INC. (SENTIN) Reviewer: Calvin Tanaka, ESAT/LDC

Date: October 17, 2001

Concentration in mg/Kg

Analysis Type: Low Concentration Soil

Samples For Total Metals

Station Location :	SA37			SB37			SS40			SS40		_	SA40	-		SA40			SB40		
Sample ID :	MY05S5			MY05S6			MY05\$7	D,1		MY05S8 .	D1		MY05S9	D2		MY05T0	D2		MY05T1	D3	
Collection Date :	06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001		ļ
											•								·		
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	9290			4630			10700		_	9880			4890			4650			4300		
ANTIMONY	0.68L	J	AC	0.56Ü	J	C.	1.5L	J.	AC	1.4L	J	AC	0.74L	J	AC	0.65L	J	AC	1.1L	J	AC
ARSENIC	3.9			3.9			4.9			5.3			4.0			4.2			5.0		
BARIUM	123			77.8			189			226			183			110	100		12:2L	J	Α
BERYLLIUM	0.070↓			0.070U			0.070U			0.070U			0.070U			0.070U			U080.0		
CADMIUM	0.14U			0.130			0.130	3.1		0.13U			0.14U			0.13U			0.16U		
CALCIUM	274000	J	DE	302000	J	DE	197000	J	DE	181000	J	DE	271000	J	DE	293000	J	DE	320000	J	DE
CHROMIUM	20.3			12.8			35.5			- 37:8			17.2			16.5			21.8		
COBALT .	9.8L	J	Α	3.0L	J	Α	15.5			20.1			4.3L	J	Α	2.9L	J	Α	0.27U	,,,,,	
COPPER	14:3	IJ	ČE.	8.8	J	CE	49.3	J	CEF	90.6	J	CEF	19.1	J	CE	13.2	J)	CE	9.2	J	CEF
IRON	14800			7480			28000			21700			8480			7470			6140		
LEAD	13.7	3		17.3			190		F	384		F	48.6	121	ıF	26.7		F	13.6		F
MAGNESIUM	23800			23600			24100			22900			18900			22000			21700		
MANGANESE	239			131			347			362			153			137			89:0		F
MERCURY	0.060U			0.060U			0.12			0.19			0.060U			0.060U			0.10L	J	Α
NICKEL	37:8	2.2		20.4		1	184	24		261		1	36.3			23.7	10		10.8		
POTASSIUM	925L	J	ΑE	366L	J	AE	994L	J	AE	1080L	J	ΑE	352L	J	ΑE	330L	J	ΑE	503L	J	ΑE
SELENIUM	0.45U			0.45Ü			0.45U			0: 44 U			0.46U			0.45U			0,540		
SILVER	0.11U			0.11U			0.11U			0.11U			0.11U			0.11U			0.14U		
SODIUM	4160		17.00	3300	y T		3270			3400			3490			3510		1	5900		
THALLIUM	0.77U	J	С	0.7 6 U	J	С	0.76U	J	С.	0.75∪	J	С	` 0.78U	J	С	0,76U	J	С	0.92U	J	С
VANADIUM	30:1		¥	16.2			214			284			20.7			17.6			17.0		
ZINC	34.1			23.8		·····	239			300			57.1			41.2			27.5		F
Percent Solids	86.5			87:3			88.3			89.9			86.8			88.9			73:8		
Val - Validity. Refer to Data Qualifier	s in Table 1B.									D1, D2, etc	Field Du	nlicate F	Pairs			-					

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

Case No.: 29448 SDG No.: MY05R8

Site: KAKA'AKO BROWNFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Calvin Tanaka, ESAT/LDC

Date: October 17, 2001

.

Analysis Type: Low Concentration Soil

Samples For Total Metals

Concentration in mg/Kg

· Station Location :	SB40			SS36			SA36			SB36	•		SS39		_	Lab Blank		•			
Sample ID :	MY05T2	D3		MY05T3			MY05T4			MY05T5			MY05T7			PBS			MDL	•	
Collection Date :	06/26/2001			06/26/2001			06/26/2001			06/26/2001			06/26/2001								- 1
													<u> </u>						*		
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val .	Com
ALUMINUM	4040			4220			2250			1260			10300			13.6U			34.1		
ANTIMONY	0.73L	IJ	AC	1:2L	J	AC	0.57じ	J.	C	0.57U	J	, C -	5.4L	J	AC	0.500			0.50		
ARSENIC	6.5			6.1			2.1L	J	Α	2.3L	J	Α	14.2			0.52U			0.52		
BARIUM	23.0L	J	Α.	37.5L	J	_Ã.	33.7L	J	-A	9.3L	j	Α	331			0.14U			0.14		
BERYLLIUM	0.070U			0.070∪			0.070U			0.070U			0.070U			0.060Ų			0.060		
CADMIUM	0.14U			1.7			0:14U			0.14U			1.9	Ĵ	В	0.12U			0.12		
CALCIUM	301000	J	DE	304000	J	DE	302000	٦,	DE	302000	J	-DE	171000	J	DE	5.10			5.12		
CHROMIUM	18.2			16.9			11.4			8.4			122			0:12U			0.12		
COBALT	3.1L	J	Α	0.71L	J	Α	0.23U			0.23U			19.1			0.20U			0.20		
COPPER	19.9	J	CEF	57.2	J	CE	8.9	J	CE	7.1	J	CE	3570	J	CE	0.20U			0.20		
IRON	8500			6030			3590			2350			42100			2.9U			2.92		
LEAD	48.4		F	49.4			8.1			28.7			729			0.56U			0.56		
MAGNESIUM	26800			25800	,		22700			22700		ļ	21100			5.4U			5.40		
MANGANESE	175		F	113	2		75.1			47.0	ř		481			0.060U			0.060		
MERCURY	0.060U		·	0.060ป			0.060U		***************************************	0:060U			`0.090L	J	A	0.050U			0.050		
NICKEL	25.0			19.0			12:2			6.4L	Ú	Α -	73.8			0.22U			0.22		
POTASSIUM	448L	J	AE	211L	J	AE	338L	J	AE	, 213L	J	AE	1760	J	E	7.2L	J	Α	2.34		
SELENIUM	0.46U			0,45U			0.45∪			0.46⊔			0.45U	J	В	0.400			0.40		
SILVER	0.11U	No destination of the contract	Section Company of the	0.11U	arado oues o	200420-0-0-0	0.11U			0.11U			0.11U	J	В	0.10U			0.10		
SODIUM	4620			2690			3190			4010			5290		April and a	43.7L	J	A*	95.0		100
THALLIUM	0.77U	J	С	0.77U	J	С	0.77∪	J	С	0.78U	J	С	0.76U	J	вс	0.68U			0.68		
VANADIUM	118.5			16.5		Wy - 4	7.8L	J	Á	7.1L	.j	Α	43.1			0.20⊍			0.20		
ZINC	48.1		F	109			12.3			17.4			. 1310			0.12Ü			0.12		
Percent Solids	86.1	4		86.4			86.4			87.5			87.2			N/A			N/A		

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

CRDL - Contract Required Detection Limit

Case No.: 29448

SDG No.: MY05R8

Table 1A

Site: KAKA'AKO BROWNFIELDS
Lab: SENTINEL, INC. (SENTIN)

Date: October 17, 2001

Reviewer: Calvin Tanaka, ESAT/LDC

Concentration in mg/Kg

Analysis Type: Low Concentration Soil

Samples For Total Metals

Sample ID : a	CRDL	,	•									-									
	Result	_Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Vai	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	40.0							3000000 W.A.		***				-							
ANTIMONY	12.0	4	3. Ł																		
ARSENIC	2.0	***			(SCAROLINA PORC)		-							1.0.2.000 magazina			MANAGE TO CONTROL OF THE PARTY			and the second	
BARIUM	40.0		ž.				THE STATE OF			- 000									and the same		
BERYLLIUM	1.0		NORTH THE REST						56.00 (S. 20.00 (S. 20.00 (S. 20.00 (S. 20.00 (S. 20.00 (S. 20.00 (S. 20.00 (S. 20.00 (S. 20.00 (S. 20.00 (S.												
CADMIUM	1.0												_								
CALCIUM	1000																				
CHROMIUM	2.0																				
COBALT	10.0				7.7										*****						
COPPER	5.0						1.5										,				
IRON .	20.0 0.60																				
LEAD 5							531														
MAGNESIUM	1000																				
MANGANESE	3.0					. 12							3 4			,					
MERCURY NICKEL	0.10 8.0	-																			
POTASSIUM	1000		2		2													450			
SELENIUM	1.00																		iunge		
SILVER	2,0																				
SODIUM	1000																				
THALLIUM	2.0																				
VANADIUM	10.0					100															
ZINC	4.0	-																			
20	7.0																				

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

Case No.: 29448

SDG No.: MY05R8

Table 1A

Site: KAKA'AKO BROWNFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Calvin Tanaka, ESAT/LDC

Date: October 17, 2001

Concentration in ug/L

Analysis Type: Low Concentration Water

Samples For Total Metals

Station Location :	QW2			Lab Blank		-											-		<u> </u>		
Sample ID :	MY05T6	EB		PBW			IDL			CRDL											
Collection Date :	06/26/2001																				
																			,		
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	135L	J	Α	68.2U	***********		68.2			200											
ANTIMONY	2.5U			2:50			2.5			60.0									3.7		
ARSENIC	2.6U			2.6U			2.6			10,0						•					
BARIUM	0.84L	J	Α.	0.70⊍			0.70			200		0.00	- 2								
BERYLLIUM .	0.300		***************************************	0.30U			0.30	- 100 00000	***************************************	5.0	0.000							***************************************		V	
CADMIÚM	(0:60Ü			0:60Ŭ			0.60			5.0											
CALCIUM	213Ľ	J,	Α	47.3L	·J	Α	25.6			5000											
CHROMIUM	0.600			0.600			0:60-			10.0							i i				
COBALT	1.0U	State Control of Contr		1.0U		***************************************	1.0	**************************************	0000011/30200740000111	50.0	-	Jacon and America						and the second s		name collisione contin	
COPPER	1.00			1.00			1.0			25.0									2		
IRON	115			20.0L	J	Α	14.6	***************************************	***************************************	100		Aliahammana)	000000000000000000000000000000000000000			manage commercial state of the second		***************************************	200000000000000000000000000000000000000		
LEAD 2 1	2.8U			2.8U			2.8			3.0									* 1		
MAGNESIUM	32.4L	J	Α	27.0U	************	**********	27.0	mana asian aida.		5000		000000000000000000000000000000000000000			***************************************			10.000	MINISTRATION MINISTRATION CONTRACTOR		Baccas consultation
MANGANESE	1.3L	, J	Ą	0.30U			0.30			15.0		1									
MERCURY	0.10U	30.00 No.000 No.000	**************	0.10ป	CONTRACTOR AND A	Transcent Marine	0.10	: SOURCE PROPERTY AND C	l	0.20	25240000000000	MINISTER CONTRACTOR CO	The second secon	Transcourse and the second				******	The minimum in the control of the co		
NICKEL	1.10	***	4	1.10			1.1			40.0											
POTASSIUM	1310L	J	Α	11.7U	and the contract of	*	11.7	SOUR CONTRACT		5000	navona na mai	***************************************				anner consultation	****	Seconomical			
SELENIUM	2.00			2.0∪			2:0			5.0							10.00	,			
SILVER	0.50U			0.50∪			0.50			10.0	200760202000			***************************************							
SODIUM	671L	J	Ä	226L	J	A	474			5000											
THALLIUM	3.4U			3.4U	·		3.4			10.0	days a second							*******************************			
VANADIUM	1.00			1.00			1:0			50.0											
ZINC	2.9L	J	Α	0.60U		Brittanamann	0.60	(deconsorrers)		20.0	***************************************			***************************************	****************			oncore-			
		,	· .								44										

Val - Validity. Refer to Data Qualifiers in Table 1B.

· Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL - Instrument Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

- U The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- L Indicates results which fall between the sample detection limit and the CRDL. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence <u>or</u> absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

ICF Consulting / Laboratory Data Consultants

Environmental Services Assistance Team, Region 9

1337 South 46th Street, Building 201, Richmond, CA 94804-4698

Phone: (510) 412-2300 Fax: (510) 412-2304

MEMORANDUM

TO:

Tom Mix

Brownfields Project Officer Brownfields Team, SFD-1-1

THROUGH:

Rose Fong

RF

ESAT Region 9 Project Officer

Quality Assurance (QA) Program, PMD-3

FROM:

Doug Lindelof

Data Review and QA Document Review Task Manager

Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68-W-01-028

Task Order: B01

Technical Direction No.: B0105034 Amendment 1

DATE:

October 17, 2001

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE:

Kaka'ako BF

SITE ACCOUNT NO.:

09 00 LA00

CERCLIS ID NO.:

None

CASE NO.:

29448

SDG NO.:

MY05P8

LABORATORY:

Sentinel, Inc. (SENTIN)

ANALYSIS:

Total Metals

SAMPLES:

1 Water, 19 Soil Samples (See Case Summary)

COLLECTION DATE:

June 25, 2001

REVIEWER:

Kendra DeSantolo, ESAT/Laboratory Data

Consultants (LDC)

The comments and qualifications presented in this report have been reviewed by the EPA Task Order Project Officer (TOPO) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Dawn Richmond (QA Program/EPA) at (415) 744-1494 or Rose Fong (QA Program/EPA) at (415) 744-1534.

Attachment

cc: Edward Messer, CLP PO USEPA Region 4 Steve Remaley, CLP PO USEPA Region 9

ESAT File

CLP PO: [X]FYI []Attention []Action SAMPLING ISSUES: [X]Yes []No

B0105034-0675/29448MY05P8RPT.wpd

Data Validation Report

Case No .:

29448

SDG No.: MY05P8

Site:

Kaka'ako BF

Laboratory:

Sentinel, Inc. (SENTIN)

Reviewer:

Kendra DeSantolo, ESAT/LDC

Date:

October 17, 2001

I. Case Summary

SAMPLE INFORMATION:

Samples: MY05P8, MY05P9, MY05Q0 through MY05Q9, MY05R0

through MY05R7

Concentration and Matrix:

Low Concentration Water (MY05R2), Low Concentration

Soils (All others)

Analysis: Total Metals

SOW: ILM04.1

Collection Date: June 25, 2001 Sample Receipt Date: June 27, 2001 Preparation Date: July 10, 2001

Analysis Date: July 11, 2001 and July 13-16, 2001

FIELD QC:

Field Blanks (FB): MY05R2
Equipment Blanks (EB): Not Provided
Background Samples (BG): Not Provided

Field Duplicates (D1): MY05Q7 and MY05Q8

Method Blanks and Associated Samples:

PBW: MY05R2

PBS: MY05P8, MY05P9, MY05Q0 through MY05Q9, MY05R0,

MY05R1, MY05R3 through MY05R7

LABORATORY QC:

Matrix Spike: MY05Q3S

Duplicates: MY05Q3D

ICP Serial Dilution: MY05Q3L

ANALYSIS: Total Metals

Sample Preparation Analysis

Analyte and Digestion Date Date

ICP Metals July 10, 2001 July 13-16, 2001

Mercury July 10, 2001 July 11, 2001

Percent Solids July 6, 2001

CLP PO ACTION:

None.

CLP PO ATTENTION:

None.

SAMPLING ISSUES:

The laboratory noted the absence of Chain-of-Custody (CoC) seals on the cooler upon receipt.

B0105034-0675/29448MY05P8RPT.wpd

ADDITIONAL COMMEN'1 ...

The standards preparation data was not included in the data package. This information was requested from the laboratory but has not been received to date. Data quality is not likely to be affected and this report is considered final. Refer to the attached telephone record log (TRL) for details.

All method requirements specified in the EPA Contract Laboratory Program (CLP) Inorganic Statement of Work (SOW) have been met.

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B.

This report was prepared in accordance with the following documents:

- ESAT Region 9 Standard Operating Procedure 906, Guidelines for Data Review of Contract Laboratory Program Analytical Services (CLPAS) Inorganic Data Packages;
- Multi-Media, Multi-Concentration, Inorganic Analytical Service for Superfund (ILM04.1); and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

II. Validation Summary

The data were evaluated based on the following parameters:

<u>Paran</u>	<u>neter</u>	<u>Acceptable</u>	Comment
1. 2. 3.	Data Completeness Sample Preservation and Holding Times Calibration a. Initial Calibration Verification b. Continuing Calibration Verification c. Calibration Blank	Yes Yes Yes	
4.	d. CRDL Standard Blanks a. Laboratory Preparation Blank b. Field Blank	Yes	
5.	c. Equipment Blank ICP Interference Check Sample Analysis	No	В
6. 7.	Laboratory Control Sample Analysis Spiked Sample Analysis	Yes No	C
8. 9. 10.	Laboratory Duplicate Sample Analysis Field Duplicate Sample Analysis GFAA QC Analysis	No No N/A	D F
	a. Duplicate Injectionsb. Analytical Spikesc. Method of Standard Addition		
11.	ICP Serial Dilution Analysis	No	E
12. 13.	Sample Quantitation Sample Result Verification	Yes Yes	Α

N/A = Not Applicable

III. Validity and Comments

- A. The following results are estimated and flagged "J" in Table 1A.
 - All results above the instrument detection limit or the method detection limit but below the contract required detection limit (denoted with an "L" qualifier)

Results above the instrument detection limit (IDL) for waters or the method detection limit (MDL) for soils but below the contract required detection limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- B. The following results are estimated because of ICP interelement interference problems. The results are flagged "J" in Table 1A.
 - Cadmium, selenium, silver and thallium in sample MY05P8

Results for the listed target analytes were reported from undiluted analyses that contained iron concentrations above the level in the ICS solution. Therefore, the applied interelement correction (IEC) factors may not compensate sufficiently for the interference.

The results for the analytes listed above may be biased low and false negatives may exist.

The ICP ICS solutions A and AB are analyzed to determine the effects of high concentrations of interfering elements on each analyte determined by ICP. Solution A consists of the interferents (Al, Ca, Fe, and Mg), and Solution AB consists of the analytes mixed with the interferents.

When the estimated concentration produced by the interfering element is greater than twice the CRDL and also greater than 10% of the reported concentration of the affected element, the results of the affected elements are estimated.

- C. The following results are estimated because of matrix spike recovery results outside method QC limits and flagged "J" in Table 1A.
 - Antimony, silver, thallium, and zinc in all samples except MY05R2

The matrix spike recovery results for antimony, silver, thallium and zinc in QC sample MY05Q3S did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

	MY05Q3S	MY05Q3S
<u>Analyte</u>	% Recovery	% Bias
Antimony	. 44	-56
Silver	73 -	-27
Thallium	40	-60
Zinc	129	+29

Results above the IDL or MDL are considered quantitatively uncertain. The results reported for antimony, silver and thallium in all samples except MY05R2 may be biased low and, where nondetected, false negatives may exist. The results reported for zinc in all samples except MY05R2 may be biased high and false positives may exist.

According to the Inorganic SOW, when the pre-digestion spike recovery results for ICP analytes (except silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. The following post-digestion spike recovery results were obtained.

MY05Q3A

Post-Digestion Spike

Analyte
Antimony
Thallium
Zinc

% Recovery

97 0 9

Since the post-digestion spike recovery was acceptable, the low pre-digestion spike recovery result (44%) obtained for antimony may indicate sample nonhomogeneity, poor laboratory technique or matrix effects which may interfere with accurate analysis, enhancing or depressing the analytical result. Since both the post- and pre-digestion spikes did not meet the QC criteria for thallium and zinc, matrix effects may be present in the sample digestate which may enhance or depress the analyte signal during analysis.

The matrix spike sample analysis provides information about the effect of the sample matrix on the digestion and measurement methodology.

- D. The following results are estimated because of laboratory duplicate results outside method QC limits and flagged "J" in Table 1A.
 - Copper in all of the samples except MY05R2

Laboratory duplicate results did not meet the ± 35 relative percent difference (RPD) criterion for precision as listed below.

MY05Q3 Lab. Dup. RPD 40

Analyte RPI Copper 40

The results reported for copper in all of the samples except MY05R2 are considered quantitatively uncertain.

Duplicate analyses demonstrate the analytical precision obtained for each sample matrix. The imprecision between duplicate results may be due to sample nonhomogeneity or poor laboratory technique.

- E. The following results are estimated because of ICP serial dilution results outside method QC limits and flagged "J" in Table 1A.
 - Calcium and zinc in all of the samples except MY05R2

The percent difference of the ICP serial dilution analysis of sample MY05Q3 did not meet the 10% criterion for the analytes shown below.

Analyte MY05Q3L
Calcium +28
Zinc +11

The results reported for calcium and zinc in all of the samples except MY05R2 are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects. The results for the diluted sample were higher than the original. Therefore, the results may be biased low.

A five fold dilution of the laboratory QC sample is performed in association with the ICP procedure to indicate whether interference exists due to sample matrix effects. If the analyte

concentration i. fficiently high (minimally a factor of 5 c ove the IDL in the original sample), the five fold serial dilution must agree within 10% of the original results after correction for dilution.

F. A RPD of 38 was obtained for chromium in the analysis of field duplicate pair samples MY05Q7 and MY05Q8. The field duplicate results are expected to vary more than laboratory duplicates (±35 RPD or ±2×CRDL criteria for precision) since sampling variability is included in the measurement. The effect on the quality of the data is not known.

The analysis of field duplicate samples is a measure of both field and analytical precision. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix, sample nonhomogeneity, or poor sampling or laboratory technique.

SDG No.: MY05P8

Table 1A

Site: KAKA'AKO BROWNFIELDS

Lab: SENTINEL, INC. (SENTIN)

Reviewer: Kendra DeSantolo, ESAT/LDC

Date: October 17, 2001

Concentration in mg/Kg

Analysis Type: Low Concentration Soil
Samples For Total Metals

Station Location : Sample ID : Collection Date :	SS24 MY05P8 06/25/2001			SA24 MY05P9 06/25/2001			SB24 MY05Q0 06/25/2001			SS32 MY05Q1 06/25/2001			SS15 MY05Q2 06/25/2001	-		SS16 MY05Q3 06/25/2001			SA16 MY05Q4 06/25/2001		
PARAMETER	Result	·Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	35800			1310			12700			13400			.9570	***********		16700			2140		
ANTIMONY	2.3L	Ú	AC	0.58U	J.	Ċ	0,91L	, - J	AC	4.0L	J. /	AC	2.6L	J.	AC	1,5L) j	AÇ	0:56U	, J	С
ARSENIC	4.5			4.1		*********	3.7			14.6			14.1	***********	112 management and a	. 4.2			3.0		
BARIUM	443	24		10.9L	÷,J	Α	181			149			103			329			27.4L	J	· , 'A
BERYLLIUM	0:070∪			0.070U			0.070U			0.060U		skenomer sees	0.070U	10/86/1000100000		0.070U			0.070U		
CADMIUM	0.14U	J	В	0:140			0.14U			0.13U			0:44L	. J	* A	0.14U			0.13U		
CALCIUM	92300	J	E	318000	J	E	189000	J	E	185000	J	E	183000	J	E	180000	J	E	325000	J	E
CHROMIUM	44.0			6:2			21.7			37.1			38.0			25.8			8.5		
COBALT .	54.4	*************	CONTRACTOR CONTRACTOR	0.23U	SOUTHWEST COMMON SECTION AND ADDRESS OF THE PARTY OF THE	30.00000000000000000000000000000000000	13.3	Windowski		17.1			9.7L	J	Α,	26.3	***********		0.22U		
COPPER	77.4	. J	Ď.	3.9L	. j ≯	AD	49.2	J	. D	107	j	D.	283	J	D	46.1	J.	D	14.4	J	LD′
IRON	66600			2570	997990 4300 2 000 2 000		22400	****		23800			28500			31700			3920	1	
LEAD	307			19.6	100		36.7			306		1	178			64.7			11.6		
MAGNESIUM	34400			24200			25800			19300			20000			32500			21400		
MANGANESE	1080			57.6			332		* 1	416	16		316			568			80.0		
MERCURY	0.21			0.060U			0.070L	J	Α	0.60			0.27			0.12			0.060U		
NICKEL	168			6.5L	J	A .	60.5			67.7			37.3			93.7			10.7		
POTASSIUM	4010			149L	J	Α	2260			1400			1030L	J	Α	1520	F		197L	J	Α
SELENIUM	0.47U	J	В	0.460			0.460			0.42U			0.480			0.47⊍			0.450	-	
SILVER	0.12U	j	вс	0.12U	J	С	0,11U	J	С	0.11U	J	С	0.12U	J	С	0.12U	J	С	0.11U	J	С
SODIUM	8350			2790			6890			3750			3730			4620			2850		
THALLIUM	0.79∪	J	вс	0.79U	J	С	0.78U	J	С	0.72U	J	С	0.82U	J	С	0.79U	J	С	0.76U	J	С
VANADIUM	117			6:7L	J	Α	28.7			53.1			36.2			50:2	1		7.8L	J.	Α
ZINÇ	279	J	CE	11.8	J	CE	95.5	J	CE	125	J	CE	459	J	CE	.110	J	CE	19.4	J	CE
Percent Solids	84.2			85.5			86:2			94.3			82:0			85.6			88:0		

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

Case No.: 29448 SDG No.: MY05P8

Site: KAKA'AKO BROWNFIELDS Lab: SENTINEL, INC. (SENTIN) Reviewer: Kendra DeSantolo, ESAT/LDC

Date: October 17, 2001

Analysis Type: Low Concentration Soil

Concentration in mg/Kg

Samples For Total Metals

Station Location :	SB16			SS23			SS31			SS31			SA31	-		SB31			SS30		
Sample ID :	MY05Q5			MY05Q6			MY05Q7)1		MY05Q8	11		MY05Q9			MY05R0			MY05R1	•	
Collection Date :	06/25/2001			06/25/2001			06/25/2001			06/25/2001			06/25/2001			06/25/2001			06/25/2001		
·																					
PARAMETER	Result	Val_	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Vai	Com	Result	Val	Com
ALUMINUM	736			8550			9680			11900			16600			13100			24700		
ANTIMONY	0:59U	J	С	2.1L	J	AC	1.8L	J	AC	1.4L	Jτ	AC	1.4L	j J	AC	1.7L	j,	AC*	1.8L	J	AC
ARSENIC	2.8			9.9			7.7			8.3			1.7L	J	Á	4.6			3.9		
BARIUM	5.5L	J	Α	68:0			59.9			65,0		i .	127			405			183		10
BERYLLIUM	0.070U			0.070U			0.070U			0.070∪			0.070U			0.070U			0.070U		
CADMIUM	0.14U			0.14U			0.13U			0.13U			0.14Ū			0.140			0.150		
CALCIUM	333000	J	E	179000	J	E	182000	· J	E	175000	J	E	66400	J	E	160000	J	E '	56700	J	Е
CHROMIUM	7.5			42.2		14	34.0		F	49.9		F	52.7			39.5			58.4		
COBALT	0.24U			8.9L	J	Α	8.4L	J	Α	9.6L	J	Α	22.3		i	18.9			34.3		
COPPER	2:0L	J	ΑD	131	J	D+	104	J	D _i	118	J	D	62.2	J	D.	66.7	J -	D	95.1	J	D
IRON	1170			20100			17600			24800			27100			25400			44000		
LEAD	0.66U			121			56:3			66.1			57.8			337			49.4	1	
MAGNESIUM	27000			18600			19800			16300			12500			24200			11300		
MANGANESE.	36.4			285			250			246			484			459			602		
MERCURY	0.050U		***************************************	0.22			0.37			Ò.29			0.22			0.27			0.090L	J	Α
NICKEL	2:1L	J.	A	40.3			36.6			36.9			82.7			-77.6			152		
POTASSIUM	115L	J	Α	720L	J	Α	726L	J	Α	691L	J	Α	1330			1910			878L	J	Α
SELENIUM	0:47∪			0.45U			0.44U			0.44U			0.480			0.47U			0.48U		
SILVER	0.12U	J	С	0.11⊍	J	С	0.11U	J	С	0.11U	J	С	0.12U	į.	С	0.12U	J	С	0.12U	J	С
SODIUM	2670			3070			4940			5280		1	6360			7340			2270		
THALLIUM	0.80U	J	С	0.77U	J	C.	0,75U	J	С	0.75U	J,	С	0.82U	J	С	0.80U	J	С	0.82U	J	С
VANADIUM	4.0L	, J	A	31.0	10.00		38.3			52.6			55.0			65.2			110		
ZINC .	5.4	J	CE	256	j	CE	162	J	CE	218	J	CE	110	J	CE	256	J	CE	230	J	CE
Percent/Solids	83.8			86.3			90.7			91.2			82.0			82:9		,	81:0		

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

Concentration in mg/Kg

Case No.: 29448

SDG No.: MY05P8

Site: KAKA'AKO BROWNFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Kendra DeSantolo, ESAT/LDC

Date: October 17, 2001

Analysis Type: Low Concentration Soil

Samples For Total Metals

Station Location : Sample ID :	SS22 MY05R3			SS29 MY05R4			SA29 MY05R5			SB29 MY05R6			SS28 MY05R7			Lab Blank PBS			MDL		
Collection Date :	06/25/2001			06/25/2001			06/25/2001	_		06/25/2001			06/25/2001	_							
PARAMETER	Result	Val	Com	Result	Val	Com	Result	_Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	13000	manuscrawwatti :		10100	Mirror Company		22100	200000000000000000000000000000000000000		23100	-	NAME OF THE PARTY	3790		_	33.6U			33.6		
ANTIMONY	1.3L	J	AC	0.71L	Jii	AC :	3:3L	J	AC	3.7L	J	AC	1.44	J	AC	0.50U			€0:50		
ARSENIC	3.9	hadanan kanan ana ana ana ana ana ana ana a	200000000000000000000000000000000000000	4.0			6.1	***************************************		5.4		·	5,1			0.52U			0.52		
BARIUM	125			67.4			420			453			63.8			0.140			0.14		17
BERYLLIUM	0.070∪	Maria Service		0.070U			0.070U			0.070U			0.070U	ON: A1		0.060U			0.06		
CADMIUM	0.140			0.140		5.5	⊮ 0.14U∗			0.15U			0.13U			0.12U			0.12		
CALCIUM	149000	J	E	135000	J	Ε	107000	J	Ε	95300	J	E	300000	J	E	5.1U	: :Zaholowboooneo	tonnakkeenneknooss:	5.1	000000000000000000000000000000000000000	A. Vasiliannia materiana
CHROMIUM	48.2			34.5			53.6		1	84.6			13.6			0.120			0.12		
COBALT	18.4			12.9	2-0000000000000000000000000000000000000	466745-000980	30.1	10000-000000000	000000000000000000000000000000000000000	39.4			2.5L	J	Α	0.20∪			0.20		
COPPER	93:7	Ú	D	47.5	J	D	214	J	D	172	J	D	60.6	ل	D	0.200			0.20		
IRON	23100			17600		2	42200			47800			7440			2.9U			2.92		4
LEAD	76.0		4	36.1			390			320			141			0.560			0.56		, J.,
MAGNESIUM	21500			17100			21200			26700			21800			5.4U			5.4		
MANGANESE	420			352	. 2		697			713			125		i	0.060U			0.06		
MERCURY	0.13			0.060U			0.49			0.30			0.060U			0.050U			0.05		
NICKEL	67:5			55.8			134			158			26.0			0.22U			0.22		
POTASSIUM	1300			718L	J	Α	3390			3570			665L	J	Α	2.3U			2.34		
SELENIUM	0.47U			0.450			0.460			0.50U			0.45U			0.40U			0.40	,	
SILVER .	0.12U	J	С	0.11U	J	С	. 0.11U	J	С	0.12U	J	С	0.11U	J	С	0.10U			0.10		
SODIUM	3710			3350			9250			9230			3650			26.2U			26.2		
THALLIUM	0.79U	J	С	0.77U	J	С	0.78U	J	С	0.84U	J	С	0.76U	J	С	0.68U			0.68		
VANADIUM	47.2			35.2			81.7			91.8			16.6			0.20U			0.20		
ZINC	227	J	CE	72.1	J	CE	603	J	CE	538	J	CE	97.5	J	CE	0.12U			0.12		
Percent Solids	85.0			86.6			87.2			80 8			88.8								

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

SDG No.: MY05P8

Site: KAKA'AKO BROWNFIELDS Lab: SENTINEL, INC. (SENTIN) Reviewer: Kendra DeSantolo, ESAT/LDC

Date: October 17, 2001

Case No.: 29448

Analysis Type: Low Concentration Soil Samples For Total Metals

Concentration in mg/Kg

Sample ID :	CRDL								· · ·												
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	40																				
ANTIMONY	12																				
ARSENIC	2.0															•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
BARIUM	40			6.2									1	7. 7							
BERYLLIUM	1.0																				,
CADMIUM	1.0			40.00																	
CALCIUM	1000	Ministration		- martin distant	******************************	-thomasontaneo-															
CHROMIUM	2.0											ar na	- 3								
COBALT	10								***************************************		***************************************										
COPPER	5.0					7	0.0000000			24.9	Ý		1								
IRON	20				dia noncompanyo			ſ										vecusificani Matabalan	·		
LEAD -	0.6			\$45	54										T.					100	
MAGNESIUM	1000			**************************************				anim awaya		OPA SAN AND AND AND AND AND AND AND AND AND A		and the Service of the		190000000000000000000000000000000000000		Manager Control				etaberraret de la	in many in minor.
MANGANESE	3.0												3								
MERCURY	0.1	NO CONTRACTOR						30 3 0000000000000000000000000000000000									- Mainari Janasha	en-co-editionance/core	wer		S SAMEON MARKET
NICKEL	8.0			44										1.37							
POTASSIUM	1000	terner.		,														200000000000000000000000000000000000000			a Secretaria
SELENIUM	1.0	42														F			-		
SILVER	2.0					10 1 10 10 10 10 10 10 10 10 10 10 10 10 10	2					ories de l'acceptant de			-25-25000000000			enventura: r.s.a.c			
SODIUM	1000	ara ara											損								
THALLIUM	2.0						,														
VANADIUM	10		5										į.								
ZINC	4.0																				
Val - Validity - Refer to Data Qualifier	ő.			15.				*		D1 D2 oto											

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL: Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

SDG No.: MY05P8

Table 1A

Site: KAKA'AKO BROWNFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Kendra DeSantolo, ESAT/LDC

Date: October 17, 2001

Concentration in ug/L

Analysis Type: Low Concentration Water
Samples For Total Metals

Station Location :	OW1			Lab Blank			r				_	-							· -		
Station Location : Sample ID :	MYÓ5R2 F	n e		PBW			IDL			CRDL											
Collection Date :	06/25/2001	ь		FBW			IDL			CKDL						•		•			ŀ
Collection Date .	00/23/2001																				
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	168U			168U			168			200											
ANTIMONY	2.5U			2.50			2.5			60.0											
ARSENIC	2.6U		-	2.6U			2.6			10.0											ļ
BARIUM	0.70U			0.700			0.70			200				***		100000	* 100			1.1	
BERYLLIUM	0.30U			0.30U			0.30	***************************************		5.0											
CADMIUM	0.60U			0,60U			0.60			5.0				1							
CALCIUM	75.4L	J	Α	25.6U			25.6			5000	***************************************						SUCCESSIBLE SUCCESSION STATES				
CHROMIUM	0.60U	i i		0.60U			0.60			10.0											
COBALT	1.0U		Territorio Companio C	1.0U		**************************************	1.0	de Minacommonosco	100000000000000000000000000000000000000	50.0	stanonens.		THE RESERVE OF STREET							- identities and the identities are also and the identities and the identities and the identities are also and the identities and the identities are also and the identities and the identities are also and the identities and the identities are also and the identities and the identities are also are also and the identities are also are al	
COPPER	1.0U			1.00			110			25.0											
IRON	14.6U			14.6U			14.6			100				ĺ				eecSinonin			
LEAD .	2.80			⊬ 2.8U			2.8			3.0			99 2								
MAGNESIUM	27.0U		toracionario (C	27.0U			27.0			5000								nontractive.			
MANGANESE	0.30U			0:300			0.30			15.0		. 4									
MERCURY	0.10U			0.10U	China wa		0.10		and the second	0.20						·					
NICKEL	1.10			1.10			1.1		1.0	40.0											
POTASSIUM	1240L	J	Α	11.7U			11.7			5000	8000									e e e e e e e e e e e e e e e e e e e	
SELENIUM	2:00			2.00	11.		2.0			5.0											
SILVER	0:55L	J	A	0.50U			0.50			10.0											
SODIUM	192L-	J	A۱	1310			131			5000	6.0										
THALLIUM	3.4U			3.4∪ 1.0∪			3.4			10.0											
VANADIUM	1:00			*******************************			1.0			50.0											
ZINC	2.1L	J	A	2.4L	J	Α	0.60			20.0											
A				196					X					- **							

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL - Instrument Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

- U The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- L Indicates results which fall between the sample detection limit and the CRDL. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence <u>or</u> absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

In Reference to Case 29448 SDG No.: MY05P8, MY05R8, MY05T8, MY05X0, MY05Y2, and MY05Y8

Contract Laboratory program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log
Date of Call:
Laboratory Name: Sentinel, Inc. (SENTIN)
Lab Contact: Melvin Kilgore
Region: 9
Regional Contact: Steve Remaley, CLP PO
ESAT Reviewer:Stan Kott, ESAT/ICF-LDC
Call Initiated By: Laboratory _X_ Region
In reference to data for the following sample(s): <u>SDG No.: MY05P8, MY05R8, MY05T8, MY05X0, MY05Y2, and MY05Y8</u>
Summary of Questions/issues Discussed:
The following item was noted during the review of this sample delivery group (SDG). Please respond within 7 days as specified in Exhibit A, Section II, E. of the ILM04.0 Statement of Work (SOW). Send response and resubmissions to ICF Consulting, Inc./Laboratory Data Consultants, Inc., Environmental Services Assistance Team, Region 9, 1337 S. 46th Street, Building 201, Richmond, CA 94804, FAX 510 412-2304.
1. The cover pages for both ICP and CVAA analyses provide only reference numbers for the standard solutions used. However, Region 9 requests the following information for all standards (calibration and QC) used: expiration date of standard, preparation date, lot number, and standard sources. Please provide one copy of the above listed data for both ICP and CVAA.
Summary of Resolution: To be determined.
Regional Contact Signature Date of Resolution

ICF Consulting / Laboratory Data Consultants

Environmental Services Assistance Team, Region 9

1337 South 46th Street, Building 201, Richmond, CA 94804-4698

Phone: (510) 412-2300 Fax: (510) 412-2304

MEMORANDUM

TO:

Tom Mix

Brownfields Project Officer Brownfields Team, SFD-1-1

THROUGH:

Rose Fong

ESAT Project Officer

Quality Assurance (QA) Program, PMD-3

FROM:

Doug Lindelof

Data Review and QA Document Review Task Manager

Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68-W-01-028

Task Order: B01

Technical Direction No.: B0105034 Amendment 1

DATE:

October 24, 2001

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

Kaka'ako BF

SITE ACCOUNT NO.:

09 00 LA00

CERCLIS ID NO.:

None provided

CASE NO.:

29448

SDG NO.:

MY05X0

LABORATORY:

Sentinel, Inc. (SENTIN)

ANALYSIS:

Total Metals

SAMPLES:

1 Water, 19 Soil Samples (See Case Summary)

COLLECTION DATE: June 27, 2001

REVIEWER:

Kendra DeSantolo, ESAT/Laboratory Data Consultants (LDC)

The comments and qualifications presented in this report have been reviewed by the EPA Task Order Project Officer (TOPO) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Dawn Richmond (QA Program/EPA) at (415) 744-1494 or Rose Fong (QA Program/EPA) at (415) 744-1534.

Attachment

cc: Edward Messer, CLP PO USEPA Region 4 Steve Remaley, CLP PO USEPA Region 9

ESAT File

CLP PO: [X]FYI []Attention []Action

SAMPLING ISSUES: [X]Yes []No

Data Validation Report

Case No .:

29448

SDG No.: MY05X0

Site:

Kaka'ako BF

Laboratory:

Sentinel, Inc. (SENTIN)

Reviewer:

Kendra DeSantolo, ESAT/LDC

Date:

October 24, 2001

I. Case Summary

SAMPLE INFORMATION:

MY05X0 through MY05X9, MY05Y0, MY05Y1, MY05Y5, Samples:

MY05Y6, MY05Y9, MY05Z0, MY05Z2 through MY05Z5

Concentration and Matrix: Low Concentration Water (MY05Y6), Low Concentration

Soils (All others)

Analysis: **Total Metals**

SOW: ILM04.1

Collection Date: June 27, 2001 Sample Receipt Date: July 2, 2001

July 13 and 18, 2001 Preparation Date:

Ânalysis Date: July 17 and 18, 2001

FIELD OC:

Field Blanks (FB): Not Provided

Equipment Blanks (EB): MY05Y6 Background Samples (BG): Not Provided

Field Duplicates (D1): MY05X1 and MY05X2

(D2): MY05X5 and MY05X6

(D3): MY05X7 and MY05X8

(D4): MY05X9 and MY05Y0

Method Blanks and Associated Samples:

PBW: MY05Y6

PBS: MY05X0 through MY05X9, MY05Y0, MY05Y1, MY05Y5,

MY05Y9, MY05Z0, MY05Z2 through MY05Z5

LABORATORY OC:

Analyte

Matrix Spike: MY0XY1S

Duplicates: MY0XY1D

ICP Serial Dilution: MY0XY1L

> ANALYSIS: **Total Metals**

Sample Preparation Analysis and Digestion Date Date

ICP Metals July 13, 2001 July 17, 2001

Mercury July 18, 2001 July 18, 2001

Percent Solids July 13, 2001

CLP PO ACTION:

None

CLP PO ATTENTION:

None

SAMPLING ISSUES:

The cooler containing all of the samples arrived at the laboratory with a temperature of $10.0\,^{\circ}$ C. This temperature exceeds the temperature of $4\pm2\,^{\circ}$ C specified in the Statement of Work (SOW). Since the water sample was preserved to a pH less than 2, no adverse effect on the quality of the data is expected. Although the soil samples were received by the laboratory more than 24 hours after the last sample was collected, the cooler did not exceed $20\,^{\circ}$ C and no adverse effect on the quality of the data is expected.

The chain of custody (CoC) did not specify a sample to be used for laboratory quality control (QC). However, the laboratory correctly assigned the QC sample based upon the additional sample quantity provided.

ADDITIONAL COMMENTS:

The standards preparation data was not included in the data package. This information was requested from the laboratory but has not been received to date. Data quality is not likely to be affected and this report is considered final. Refer to the attached telephone record log (TRL) for details.

All method requirements specified in the EPA Contract Laboratory Program (CLP) Inorganic Statement of Work (SOW) have been met.

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B.

This report was prepared in accordance with the following documents:

- ESAT Region 9 Standard Operating Procedure 906, Guidelines for Data Review of Contract Laboratory Program Analytical Services (CLPAS) Inorganic Data Packages;
- Multi-Media, Multi-Concentration, Inorganic Analytical Service for Superfund (ILM04.1); and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

II. Validation Summary

The data were evaluated based on the following parameters:

<u>Paran</u>	<u>neter</u>	<u>Acceptable</u>	Comment
1. 2. 3.	Data Completeness Sample Preservation and Holding Times Calibration a. Initial Calibration Verification b. Continuing Calibration Verification c. Calibration Blank d. CRDL Standard	Yes Yes Yes	
4.	Blanks a. Laboratory Preparation Blank b. Field Blank c. Equipment Blank	Yes	
5.	ICP Interference Check Sample Analysis	No	В
6.	Laboratory Control Sample Analysis	Yes	
7.	Spiked Sample Analysis	No [.]	С
8.	Laboratory Duplicate Sample Analysis	No	D
9.	Field Duplicate Sample Analysis	No	F
10.	GFAA QC Analysis a. Duplicate Injections b. Analytical Spikes c. Method of Standard Addition	N/A	
11.	ICP Serial Dilution Analysis	No	. E
12.	Sample Quantitation	Yes	Α .
13.	Sample Result Verification	Yes	

N/A = Not Applicable

III. Validity and Comments

- A. The following results are estimated and flagged "J" in Table 1A.
 - All results above the instrument detection limit or the method detection limit but below the contract required detection limit (denoted with an "L" qualifier)

Results above the instrument detection limit (IDL) for waters or the method detection limit (MDL) for soils but below the contract required detection limit (CRDL) are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- B. The following results are estimated because of ICP interference check sample (ICS) results outside method QC limits and flagged "J" in Table 1A.
 - Cadmium, lead, selenium, silver, and thallium in sample MY05X7
 - Cadmium, selenium, silver, and thallium in samples MY05X0, MY05X4, MY05X8, MY05X9, MY05Y0, MY05Y1, MY05Y5, MY05Y9, MY05Z0

Results for the above listed analytes and samples were reported from undiluted analyses that contained iron concentrations above that stated for the ICP interference check sample (ICS). Therefore, the applied interelement correction (IEC) factors may not compensate sufficiently for the interference. The results for the above listed analytes may be biased low and false negatives may exist.

The ICP ICS so. In A and AB are analyzed to determine to fects of high concentrations of interfering elements on each analyte determined by ICP. Solution A consists of the interferents (Al, Ca, Fe, and Mg), and Solution AB consists of the analytes mixed with the interferents.

When the estimated concentration produced by the interfering element is greater than twice the CRDL and also is greater than 10% of the reported concentration of the affected element, the results of the affected elements are estimated.

- C. The following results are estimated because of matrix spike recovery results outside method QC limits and flagged "J" in Table 1A.
 - Antimony and selenium in all soil samples

The matrix spike recovery results for antimony and selenium in QC sample MY05Y1S did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

	MY05Y1S	MY05Y1S
<u>Analyte</u>	% Recovery	% Bias
Antimony	43	-57
Selenium	62	-38

Results above the MDL are considered quantitatively uncertain. The results reported for antimony and selenium in all soil samples in this SDG may be biased low and, where nondetected, false negatives may exist.

According to the Inorganic SOW, when the pre-digestion spike recovery results for ICP analytes (except silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. The following post-digestion spike recovery results were obtained.

	MY05Y1A
•	Post-Digestion Spike
	% Recovery
	<u> </u>

Antimony 95 Selenium 109

Analyte

Since the post-digestion spike recoveries were acceptable, the low pre-digestion spike recovery results (43% obtained for antimony and 62% for selenium) may indicate sample nonhomogeneity, poor laboratory technique or matrix effects, which may interfere with accurate analysis, enhancing or depressing the analytical result.

The matrix spike sample analysis provides information about the effect of the sample matrix on the digestion and measurement methodology.

- D. The following result is estimated because the laboratory duplicate result is outside method QC limits and is flagged "J" in Table 1A.
 - Copper in all soil samples

Laboratory duplicate results did not meet the ±35 relative percent difference (RPD) criteria for precision as listed below.

	MY05Y1D
	Lab. Dup.
<u> nalyte</u>	<u>RPD</u>
Copper	74

The results reported for copper in all soil samples are considently quantitatively uncertain.

Duplicate analyses demonstrate the analytical precision obtained for each sample matrix. The imprecision between duplicate results may be due to sample nonhomogeneity or poor laboratory technique.

- E. The following results are estimated because of ICP serial dilution results outside method QC limits and flagged "J" in Table 1A.
 - Silver and sodium in all soil samples

The percent difference of the ICP serial dilution analysis of sample MY05Y1L did not meet the 10% criterion for the analytes shown below.

	MY05Y1L
<u>Analyte</u>	% Difference
Silver.	+22
Sodium	+29

The results reported for silver and sodium in all of the samples are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects. The results for the diluted sample were higher than the original. Therefore, the results may be biased low.

A five fold dilution of the laboratory QC sample is performed in association with the ICP procedure to indicate whether interference exists due to sample matrix effects. If the analyte concentration is sufficiently high (minimally a factor of 50 above the IDL in the original sample), the five fold serial dilution must agree within 10% of the original results after correction for dilution.

F. In the analysis of the field duplicate pairs, the following RPDs or differences were obtained for the analytes listed below.

MY05X1 D1 .	MY05X5 D2	MY05X7 D3	MY05X9 D4
MY05X2 D1	MY05X6 D2	MY05X8 D3	MY05Y0 D4
RPD/Difference	RPD	RPD/Difference	RPD
/ 88		63' /	
- /	60	49 /	
- /		- /	44
- /	47	- /	
- /		40 /	75
80 /		. 196 /	73
- /		- /	40
- / 2240		- / 	
105 /		- / 3057	
- /		54 /	,
	MY05X2 D1 <u>RPD/Difference</u> /88 -/// 80 ///2240 105 /	MY05X2 D1 RPD/Difference / 88 60 47 47 47	MY05X2 D1 MY05X6 D2 MY05X8 D3 RPD/Difference RPD RPD/Difference /88 63 / -/ 60 49 / -/ -/ -/ -/ 47 -/ -/ -/ 40 / 80 / 196 / -/ -/ -/ 105 / -/

The field duplicate results are expected to vary more than laboratory duplicates (± 35 RPD or $\pm 2 \times \text{CRDL}$ criteria for precision) since sampling variability is included in the measurement. The effect on the quality of the data is not known.

The analysis of field duplicate samples is a measure of both field and analytical precision. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix, sample nonhomogeneity, poor sampling or laboratory technique.

SDG No.: MY05X0

Table 1A

Site: KAKA'AKO BROWNFIELDS
Lab: SENTINEL, INC. (SENTIN)

Reviewer: Kendra DeSantolo, LDC/ESAT

Date: October 24, 2001

Concentration in mg/Kg

Analysis Type: Low Concentration Soil
Samples For Total Metals

Collection Date : 06/ PARAMETER Res	Y05X0 6/27/2001 esuit 27600	Val	Com	MY05X1 D 06/27/2001)1		MY05X2 D 06/27/2001	11		MY05X3			MY05X4							_				
PARAMETER Res	27600	Val	Com			•	06/27/2001						NI YUOX4			MY05X5 D	12		MY05X6 D)2	Com AC A A A F D A C E AE			
ALUMINUM	27600	Val	Com		00/2/12001					06/27/2001			06/27/2001	•		06/27/2001			06/27/2001					
ALUMINUM	27600	Val	Com		sult Val Com Resu			<u>.</u>		· .														
			30,11	Result	Val_	Com	Result	Val	Com	Result	Val	Com	Result	Vai	Com	Result	Val	Com	Result	Val	Com			
ANTIMONY /				17700			12900			14000			14000			20100			26800					
	1.2L	J.	AC	0.68U	J	С	1.1L	J	AC	1.4L	J	AC	12.9L	J	AC	1.3L	j	AC	1.4L	J	AC			
ARSENIC	4.6			7.1	-		4.9		•	6.6			17.6			2.2L	J	Α	1.5L	J	Α			
BARIUM	179			165		F	77.2		Б	+ 139			360			73.5			86.3					
BERYLLIUM	0.89L	J	Α.	0.67L	J	Α	0.38L	J	Α	0.49L	J	Α	0.52L	J	Α	0.57L	J	Α	0.68L	J	Α			
CADMIUM	0:32L	J	AB	0.43L	J	Α	0.30L	J	Α	0.34L	J	Α	0.72	J	AB.	0.050U			0.070L	J	A'			
CALCIUM	59600			183000			. 187000			209000			170000			70100		F	37800		F			
CHROMIUM	152			59.6			66.7			57.2			48.7			117			161					
COBALT	36.3		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18.1		•	18.0	400000000000000000000000000000000000000		15.7			20.7		C8048800-V5 /75/0	65.5	, Maritina Managor	F	40.5	2277	F			
COPPER	154	J	D	71.1	J	D	57.5	J	D	55.6	J	D	878	J	. D .	73.8	J .	D	78.3	J	D			
IRON .	54100			23300			22400			22300		· · · · · · · · · · · · · · · · · · ·	.73600	5-77-10-00-00-00-00-00-00-00-00-00-00-00-00-		34200	1000 - 100 -		45000	***************************************				
LEAD	215			118		F	50:5		F	56.2			670			45.0			56.6					
MAGNESIUM	10700	•		21300			19600			21500	*		28900			9200	******************		8280		20.00.20000000000			
MANGANESE 3 4	567			462			479			382			681			856			703					
MERCURY	0.22			0.060L	J	Α	0.080L	J	А	0.090L	J	Α	0.080L	J	Α	0.060L	J	Α	0.060U					
NICKEL	105			68:7			78.3			67.0		20.0	153			125			139					
POTASSIUM	1730			2920		F	680L	·J	AF	1240			2180			828L	J	Α	1080L	J	Α			
SELENIUM	0.890	Ĵ	BC	0.800	IJ	C	1.1L	j	AC	0.80U	J	С	0.78U	7	BC	0.82U	J	С	0.850	J.	C.			
SILVER	1.9L	J	ABE	0.41L	J	ΑE	0.46L	J	ΑE	0.49L	J	ΑE	3.2	,J	BE	1,6L	j	AE	5.4	J	E			
SODIUM	2590	J	Ε	6700	, J	EF	2080	ij	EF	3270	J	E.	4280	J,	Ε	1180L	J	ΑE	942L	J	AE			
THALLIUM	1.3U		В	1.20			1.2U			1.2U			· 1.2U	J	В	1.2U			1.3U					
VANADIUM	130			49.9			58.8			58.8			49.0			89.7			120					
ZINC	364			104		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	73.0			200			1010		······································	124			153					
Percent Solids	75.9			84.3			83.4			84.2			85.6			81.3			78.8					

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

SDG No.: Y05X0

Site: KAKA'AKO BROWNFIELDS

Lab: SENTINEL, INC. (SENTIN) Reviewer: Kendra DeSantolo, LDC/ESAT

Date: October 24, 2001

Analysis Type: Low Concentration Soil

Concentration in mg/Kg

Samples For Total Metals

Station Location :	SA18			SA18			SB18			SB18			SS25			SS26			SA33		
Sample ID :	MY05X7 D	3		MY05X8 D	3		MY05X9)4		MY05Y0 D)4		MY05Y1			MY05Y5			MY05Y9		
Collection Date :	06/27/2001			06/27/2001			06/27/2001			06/27/2001			06/27/2001			06/27/2001			06/27/2001		
					•																
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	['] Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	30400			27800		· ·	27900			31100	_		17300			14700			22000		
ANTIMONY	0.76U	J)	·C	0.79U	J 🙏	С	1.9L	J,	AG	4.1L	J	AC	8.6L	J	AC	4.7L	ij	AC.	7.9L	j	AC
ARSENIC	2.3L	J	A.	1.4L	J	Α	7.0			10.2			19.6			11.1			15.5		
BARIUM	247		F	129 °		F	507;−			442			267			380			462		1.3
BERYLLIUM .	1.0L	J	Α	0.94L	J	Α	1.3			0.98L	J	.A	0.36L	J	Α	0.45L	J	Α	0.44L	J	Α
CADMIUM	0.050Ü	J	В	0.060U	J	В.	1.0L	J	AB	2.1	J	В	1.0L	J	AB	10.6	j	В	10.3	J	В
CALCIUM	35100		F	21200	***************************************	F	48200	2000 00.000 00.0000000		42000			115000			125000			56900		
CHROMIUM	152			156			76.0		F	119		·F	98.3			117			89.1		
COBALT	58.0			65.1			41.2			36.7	-		26.0			28.1			22.4		
COPPER	206	J	DF	138	J	DF	199	j	DF	438	J	DF	568	J,	D	783	J.	D	5240	J	Ď
IRON	51900			49900			64000			64300			82900			99200			79500		
LEAD	18.4	J	BF	1990		F	309		F	665		F	678			1100			1440		
MAGNESIUM	15500			11900			28000			21800			13600			16700			9180		
MANGANESE	1080			1110			1150		F	768		F	867			997			987		
MERCURY	0.060U			0.060U			0.20			0.23			0.060U			0.15			0.070L	J	Α
NICKEL	184	1	i i	173			191	1.1		210			189			145			170		
POTASSIUM	2300			1290L	J	Α	3390			2570			.915L	J	Ą	1430			1540		į
SELENIUM	1.5	J	BC	1.6	J	ВČ	0.85U	J.	BC	0.98L	J.	ABC	0.84U	J	BC	1.4	J	BC	0.76U	J	BC
SILVER	1.9L	J.	ABE	1.9L	J	ABE	2.4L	J	ABE	2.7	J	BE	5:4	J	BE	3.7	J	BE	5.9	J	85
SODIUM	4020	J	EF	963L	j	AEF	4500	j	Е	2750	J	Ě	1870	J	Ε	2730	J.	E	3320	J	Ε
THALLIUM	1.3U	J	В.	1.4U	J	8	1.3U	J	В	1.2U	J	В	1.3U	J	В	1.2U	J ·	В	1.1U	J	В
VANADIUM	136			129			100	*		112			59.0			66.9			61.8		
ZINC	6740		F	3870		F.	914			835			· . 1160			5790			1500		
Percent Solids	75.2			73.2			79.7			82.5			81:1			82.4			87.3		

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

SDG No.: Y05X0

Table 1A

Site: KAKA'AKO BROWNFIELDS Lab: SENTINEL, INC. (SENTIN)

Reviewer: Kendra DeSantolo, LDC/ESAT

Date: October 24, 2001.

Concentration in mg/Kg

Analysis Type: Low Concentration Soil Samples For Total Metals

Station Location :	SB33									SA20			SS14			Lab Blank					
Sample ID :	MY05Z0			MY05Z2			MY05Z3			MY05Z4			MY05Z5			PBS			MDL		
Collection Date :	06/27/2001			06/27/2001			06/27/2001			06/27/2001			06/27/2001								
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM .	14400			11300	-		4030			28400			7770			3.5U			3.54		
ANTIMONY	44:6	IJ	С	9.9L	J	AC	0.96L	J	AC	2.7L	J	AC	2.0L	j ,	AC.	0.580	4		0.58		
ARSENIC	57.0	1		7.6			5.0			4.4			6.4			0.92U			0.92		
BARIUM	714	178		351			33.4L	j	Α	322			66.5			- 0.140			0.14		
BERYLLIUM	0.25L	J	Α	0.36L	J	Α	0.10L	J	Α	0.90L	J	Α	0.20L	J	A	0.030L	J	Α	0.02		
CADMIUM	6.0	J	В	0:63L	J	A	0.080L	J,	A:	0.18L	J	Α	0.28L	J	Α	0.040U			0.4		
CALCIUM	30700			193000			316000			115000			279000			8.1U		************************	14.6		
CHROMIUM	87.4			32.9			20.0			74.7	,		37.9			0.080U			0.08		* #
COBALT	25.2			11.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3.7L	J	Α	26.7			8.4L	J	Α	0.22U	1		0,22		
GOPPER MANAGEMENT	1290	J,	D	113	J	D	19.6	J	D.	82.2	J	D.	41.9	J	J D	0.180			0.18		
IRON	191000			22700			5560	,		41600		200000000000000000000000000000000000000	14900	***************************************	***************************************	2.0U			1.96		
LEAD	2040			653			21.5			171			121			0.36U			0.36		
MAGNESIUM	· 7100			20200	200000		24700	***************************************	0,000	22500			26100	***************************************		2.7U			2.7		-
MANGANESE	1200	7.7		363			145			619			249			0.060U			0.06		
MERCURY	0.12L	J	Α	0.10L	J	Α	0.060U	,00000000000000000000000000000000000000		0.090L	J	А	0.050L	j	Α	0.050U			0.05		
NICKEL	296			75.1			12.4			113			39.1			± 0.32U	11		0.32		
POTASSIUM	2430		***************************************	1480	335020000000000000		283L	J	Α	3490			537L	J	А	5.ÒL	J	A	1.94	2000000	
SELENIUM	0.86∪	Ĵ	BC	0.77∪	Ĵ	С	0.76U	J	C.	1.6	J	C	0.78U	j	l C	0.68U			0:68		
SILVER .	11.5	J	BE	1.9Ĺ	J	ΑE	0.070U	J	Е	1.4L	J	ΑE	0.62L	J	AE	0.060U			0,06		
SODIUM	7610	J	Ε	4360	J	E	3100	J	E	7620		E	2550	J	E	31.0L	J	"A" }	22.8		
THALLIUM	2.4L	J	AB	1.2U	90,628,740,000		1.1U	MITA DANS		1.2U			1.2U			1.0U			1.02		
VANADIUM	52.9			37.8			16.5			87.1			30.7			0.14U			0.14		
ZINC	2180			456			40.5			248			130			0.18U			0.17		1
Percent Solids	78.7			88.3			87.7			83.0			85.1			0.160			0.10		
Val - Validity. Refer to Data Qualifie	N			50.0			VI1663			D1 D2 etc	Field D	unlicato E								1	-1

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

ANALYTICAL RESULTS Page 4 of 4

> Site: KAKA'AKO BROWNFIELDS Lab: SENTINEL INC (SENTIN) Reviewer: Kendra DeSantolo, LDC/ESAT

Case No.: 29448

Date: October 24, 2001 Concentration in mg/Kg

SDG No.: MY05X0

Analysis Type: Low Concentration Soil

Samples For Total Metals

Station Location : Sample ID : Collection Date :	CRDL		Val. Com													·					
PARAMETER	Result	Val	Com							Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Vai	Com
ALUMINUM	40.0													Coffmannamen					***************************************		- 175: 201: 900000000
ANTIMONY	12:0			14									100								
ARSENIC	2.0																	>*************************************			
BARIUM	40.0						0.000					10.00									
BERYLLIUM	1.0																****	***************************************			and an included the
CADMIUM	1.0	. 6.2.																	0.000		
CALCIUM	1000																				
CHROMIUM	2.0	4									67		3								
COBALT	10.0 5.0				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
COPPER	* Contraction of the Contraction	-2.5							16%												200
IRON LEAD	20 0.60																				
MAGNESIUM	1000					200															
MANGANESE	3:0																		100		
MERCURY	0.1														4						
NICKEL	8:0												1						10		
POTASSIUM	1000				gan an an an an an an an an an an an an a											1					:
SELENIUM	1.0																				
SILVER	2.0		***************************************												·						
SODIUM	1000	111																			
THALLIUM	2.0													enelleitettettettette							
VANADIUM	10.0													•							
ZINC	4.0													CONTROL OF THE STATE OF THE STA		***************************************			***************************************	1	
Percent Solids																					

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

Date: October 24, 2001

Site: KAKA'AKO BROWNFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Kendra DeSantolo, LDC/ESAT

SDG No.: MY05X0

Concentration in ug/L

Analysis Type: Low Concentration Water

Samples For Total Metals

Station Location : Sample ID : Collection Date :	QW3 MY05Y6 F 06/27/2001	В		Lab Blank PBW	IDL Result Val Com			CRDL													
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Vai	Com	Result	Val	Com	Result	Val	Com	Result	Vai	Com
ALUMINUM	142L	J	Α	18.1L	J	Α	17.7			200				- Million and Mill	decorrection			***************************************			
ANTIMONY	2.90			2:90			2:9			60.0			į į								
ARSENIC	4.6U		***	4.6U	NOT-12-10000000000000000000000000000000000		4.6		***************************************	10.0	<u> </u>	a. aan 100 oo oo oo oo oo					<u> </u>	***************************************	***************************************		***************************************
BARIUM	1.6L	J	A	0.73L	J	A.	0.70			200	e de como e										
BERYLLIUM	0.28L	J	Α	0.10U	**********		0.10			5.0							1 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Sterning House		
CADMIUM	0:20Ü	12		0.200			0.20			5.0			10								
CALCIUM	165L	J	A	40.4U			40.4			5000								***************************************		<u> </u>	
CHROMIUM	0,80L	l J	* A	0.400	j		0:40			10.0			# 2								:
COBALT	1.1U			1.1U			1.1	Description of		50.0		ONLOW SERVICE MARKET			Sideration regions						
COPPER	0.98L	J	Α	0.900			0.90			25.0											
IRON	17.0L	J	Α	9.8U			9.8			100											_
LEAD	1.8U		<i>8</i> 7	1.8U			1.8			3.0		4						i			
MAGNESIUM	26.0L	J	A	13.5U			13.5			5000											
MANGANESE	0.66L	J	A	0.33L	, J	Α,				15:0											
MERCURY	0.10U		*********	0.10U·		200	0.10			0.20											
NICKEL	1.6U	25.5		1.60			1.6			40:0						25			<i>,</i>		
POTASSIUM	1280L	J	A	19.9L	J	A	9.7			5000				****							
SELENIUM	3.40			3:40			3.4			5.0											
SILVER	0.31L	J	Α	0.34L	J	A	0.30			10.0											
SODIUM	935L	j	Α	214L	J	. A	114			5000											
THALLIUM VANADIUM	5.1U			5.1U 2.0.70⊎			5.1 0.70			10.0		28									
	0:70Ú			controllings and an arrangement						50:0											
ZINC	4.6L	J	A	1.1L	J	Α	0.90			20.0											

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

IDL - Instrument Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

- U The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- L Indicates results which fall between the sample detection limit and the CRDL. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence <u>or</u> absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

In Reference to
Case 29448 SDG No.: MY05P8, MY05R8, MY05T8,
MY05X0, MY05Y2, and
MY05Y8

Contract Laboratory program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log
Date of Call:
Laboratory Name: <u>Sentinel, Inc. (SENTIN)</u>
Lab Contact: Melvin Kilgore
Region:9
Regional Contact: Steve Remaley, CLP PO
ESAT Reviewer: Stan Kott, ESAT/ICF-LDC
Call Initiated By: Laboratory _X_ Region
In reference to data for the following sample(s): SDG No.: MY05P8, MY05R8, MY05T8, MY05X0, MY05Y2, and MY05Y8
Summary of Questions/issues Discussed:
The following item was noted during the review of this sample delivery group (SDG). Please respond within 7 days as specified in Exhibit A, Section II, E. of the ILM04.0 Statement of Work (SOW). Send response and resubmissions to ICF Consulting, Inc./Laboratory Data Consultants, Inc., Environmental Services Assistance Team, Region 9, 1337 S. 46th Street, Building 201, Richmond, CA 94804, FAX 510 412-2304.
1. The cover pages for both ICP and CVAA analyses provide only reference numbers for the standard solutions used. However, Region 9 requests the following information for all standards (calibration and QC) used: expiration date of standard, preparation date, lot number, and standard sources. Pleas provide one copy of the above listed data for both ICP and CVAA.
Summary of Resolution: To be determined.
Regional Contact Signature Date of Resolution

ICF Consulting / Laboratory Data Consultants

Environmental Services Assistance Team, Region 9

1337 South 46th Street, Building 201, Richmond, CA 94804-4698

Phone: (510) 412-2300 Fax: (510) 412-2304

MEMORANDUM

TO:

Tom Mix

Brownfields Project Officer Brownfields Team, SFD-1-1

THROUGH:

Rose Fong

ESAT Project Officer

Quality Assurance (QA) Program, PMD-3

FROM:

Doug Lindelof

Data Review and QA Document Review Task Manager Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68-W-01-028

Task Order: B01

Technical Direction No.: B0105034 Amendment 1

DATE:

October 17, 2001

SUBJECT:

Review of Analytical Data

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE: SITE ACCOUNT NO.: Kaka'ako BF 09 00 LA00

CERCLIS ID NO.:

None

CASE NO.: SDG NO.:

29448 MY05Y8

LABORATORY:

Sentinel, Inc. (SENTIN)

ANALYSIS:

Total Metals

SAMPLES:

11 Soil Samples (see Case Summary)

COLLECTION DATE: June 27 and 28, 2001

REVIEWER:

Stan Kott, ESAT/Laboratory Data Consultants (LDC)

The comments and qualifications presented in this report have been reviewed by the EPA Task Order Project Officer (TOPO) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Dawn Richmond (QA Program/EPA) at (415) 744-1494 or Rose Fong (QA Program/EPA) at (415) 744-1534.

Attachment

cc: Edward Messer, CLP PO USEPA Region 4 Steve Remaley, CLP PO USEPA Region 9

ESAT File

CLP PO: [X]FYI []Attention []Action

SAMPLING ISSUES: [X]Yes []No

Data Validation Report

Case No.:

29448 SDG No.: MY05Y8

Site:

Kaka'ako BF

Laboratory: Reviewer:

Sentinel, Inc. (SENTIN) Stan Kott, ESAT/LDC

Date:

October 17, 2001

I. Case Summary

SAMPLE INFORMATION:

MY05Y8, MY05Z6 through MY05Z8, MY0609 through Samples:

MY0613, MY0615, and MY0616

Concentration and Matrix:

Low Concentration Soil

Analysis:

Total Metals ILM04.1

SOW: Collection Date:

June 27 and 28, 2001

Sample Receipt Date:

July 2, 2001

Preparation Date:

July 12, 2001

Analysis Date:

July 14 through 16, 2001

FIELD QC:

Field Blanks (FB):

Not Provided

Equipment Blanks (EB):

MY05Y6 and MY0617

Background Samples (BG):

Not Provided

Field Duplicates (D1):

Not Provided

Method Blanks and Associated Samples:

PBS:

Samples listed above

LABORATORY QC:

Matrix Spike:

MY058S

Duplicates:

MY058D

ICP Serial Dilution:

MY058L

ANALYSIS:

Total Metals

Sample Preparation

and Digestion Date

Analysis Date

ICP Metals

July 12, 2001

July 14 and 15, 2001

Mercury

Analyte

July 12, 2001

July 16, 2001

Percent Solids

July 12, 2001

CLP PO ACTION:

None.

CLP PO ATTENTION:

None.

SAMPLING ISSUES:

The cooler containing samples MY05Y8, MY05Z6 through MY05Z8 arrived at the laboratory with a temperature of 10.0°C. This temperature exceeds the temperature of 4±2°C specified in the Statement of Work (SOW). Although the soil samples were received by the laboratory more than 24 hours after the last sample was collected, the cooler temperature did not exceed 20°C and no adverse effect on the quality of the data is expected.

ADDITIONAL COMMEN'A...

The standards preparation data was not included in the data package. This information was requested from the laboratory but has not been received to date. Data quality is not likely to be affected and this report is considered final. Refer to the attached telephone record log (TRL) for details.

The results for equipment blanks MY05Y6 and MY0617, collected with the samples of this sample delivery group (SDG), on June 27 and 28, 2001, respectively, are located in Case 29448, SDG Nos.: MY05X0 and MY05Y2, respectively. No qualification of data due to equipment blank contamination is warranted.

CRDL Standard Recovery is outside the EPA Region 9 Advisory Limits of 65-135%. A high recovery of 166% was obtained for lead in the ICP analysis of the CRDL standard (CRI). While there are no criteria established for CRDL standard recoveries, high recoveries may indicate high bias for sample results near the CRDL. It should be noted that high recoveries may indicate high bias for lead in sample MY0613.

All method requirements specified in the EPA Contract Laboratory Program (CLP) Inorganic Statement of Work (SOW) have been met.

The analytical results with qualifications are listed in Table 1A. The definitions of the data qualifiers used in Table 1A are listed in Table 1B.

This report was prepared in accordance with the following documents:

- ESAT Region 9 Standard Operating Procedure 906, Guidelines for Data Review of Contract Laboratory Program Analytical Services (CLPAS) Inorganic Data Packages;
- Multi-Media, Multi-Concentration, Inorganic Analytical Service for Superfund (ILM04.1); and
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

II. Validation Summary

The data were evaluated based on the following parameters:

<u>Parar</u>	<u>neter</u>	<u>Acceptable</u>	Comment
1. 2. 3.	Data Completeness Sample Preservation and Holding Times Calibration a. Initial Calibration Verification b. Continuing Calibration Verification c. Calibration Blank d. CRDL Standard	Yes Yes Yes	
4.	Blanks a. Laboratory Preparation Blank b. Field Blank c. Equipment Blank	Yes.	
. 5.	ICP Interference Check Sample Analysis	. No	В
6.	Laboratory Control Sample Analysis	Yes	
7.	Spiked Sample Analysis	No	C
8.	Laboratory Duplicate Sample Analysis	No	D
9.	Field Duplicate Sample Analysis	N/A	
10.	 GFAA QC Analysis a. Duplicate Injections b. Analytical Spikes c. Method of Standard Addition 	N/A	
11.	ICP Serial Dilution Analysis	No	E
12.	Sample Quantitation	Yes	Α
13.	Sample Result Verification	Yes	

N/A = Not Applicable

III. Validity and Comments

- A. The following results are estimated and flagged "J" in Table 1A.
 - All results above the method detection limit (MDL) but below the contract required detection limit (CRDL) (denoted with an "L" qualifier)

Results above the MDL but below the CRDL are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- B. The following results are estimated because of ICP interelement interference problems and are flagged "J" in Table 1A.
 - Cadmium and selenium in samples MY05Y8 and MY0616
 - Cadmium, selenium, silver, and thallium in sample MY0615

Results for the above listed analytes and samples were reported from undiluted analysis that contained an iron concentration above that stated for the ICP interference check sample (ICS). Therefore, the applied interelement correction (IEC) factors may not compensate sufficiently for the interference. The results for the above listed analytes may be biased low and false negatives may exsist.

The ICP ICS solutions A and AB are analyzed to determine the effects of high concentrations of interfering elements on each analyte determined by ICP. Solution A consists of the interferents (Al, Ca, Fe, and Mg), and Solution AB consists of the analytes mixed with the interferents.

When the estimated concentration produced by the interfering element is greater than twice the CRDL and also greater than 10% of the reported concentration of the affected element, the results of the affected elements are estimated.

- C. The following results are estimated because of matrix spike recovery results outside method QC limits and flagged "J" in Table 1A.
 - Antimony, arsenic, chromium, copper, mercury, silver, and thallium in all samples

The matrix spike recovery results for the above listed analytes in QC sample MY05Y8S did not meet the 75-125% criteria for accuracy. The percent recovery and possible percent bias for each analyte are presented below and are based on an ideal recovery of 100%.

Analyte	MY05Y8S <u>% Recovery</u>	MY05Y8S <u>% Bias</u>
Antimony	45	-55
Arsenic	-50	-150
Chromium	14.1	+41
Copper	156	+56
Mercury	69	-31
Silver	74	-26
Thallium	58	-42

Results above the MDL are considered quantitatively uncertain. The results reported for antimony, arsenic, mercury, silver, and thallium in all of the samples may be biased low and, where nondetected, false negatives may exist. The results reported for chromium and copper in all of the samples may be biased high and false positives may exist.

According to the Inorganic SOW, when the pre-digestion spike recovery results for ICP analytes (except mercury and silver) fall outside the control limits of 75-125%, a post-digestion spike must be performed for those elements that do not meet the specified criteria. The following post-digestion spike recovery results were obtained.

	MY05Y8A
•	Post-Digestion Spike
<u>Analyte</u>	% Recovery
Antimony	98
Arsenic	106 .
Chromium	104
Copper	104
Thallium	45

Since the post-digestion spike recoveries were acceptable, except for thallium, the predigestion spike recovery results obtained for the analytes listed above may indicate sample nonhomogeneity, poor laboratory technique or matrix effects which may interfere with accurate analysis, enhancing the analytical results for chromium and copper and depressing the analytical results for antimony and arsenic. Since both the post- and pre-digestion spikes for thallium did not meet the QC criteria, matrix effects may be present in the sample digestate which may depress the analyte signal during analysis. The matrix spike sample analysis provides information about the effect of the sample matrix on the digestion and measurement methodology.

- D. The following results are estimated because of laboratory duplicate results outside method QC limits and flagged "J" in Table 1A.
 - Arsenic, chromium, copper, and lead in all samples

Laboratory duplicate results did not meet the ±35 relative percent difference (RPD) criteria for precision as listed below.

	MY05Y8D Lab. Dup.
<u>Analyte</u>	RPD
Arsenic	69
Chromium	36
Copper Lead	46
Leâd	· 72

The results reported for the above listed analytes in all samples are considered quantitatively uncertain.

Duplicate analyses demonstrate the analytical precision obtained for each sample matrix. The imprecision between duplicate results may be due to sample nonhomogeneity or poor laboratory technique.

- E. The following results are estimated because of ICP serial dilution results outside method QC limits and flagged "J" in Table 1A.
 - Calcium in all samples

The percent difference of the ICP serial dilution analysis of sample MY05Y8L did not meet the 10% criterion for the analytes shown below.

Analyte	MY05Y8L <u>% Difference</u>
Calcium	19

The results reported for calcium in all samples are considered quantitatively uncertain. Chemical and physical interferences may exist due to sample matrix effects. The result for the diluted sample was higher than the original. Therefore, the results may be biased low.

A five fold dilution of the laboratory QC sample is performed in association with the ICP procedure to indicate whether interference exists due to sample matrix effects. If the analyte concentration is sufficiently high (minimally a factor of 50 above the IDL in the original sample), the five fold serial dilution must agree within 10% of the original results after correction for dilution.

Case No.: 29448 SDG No.: MY05Y8

Site: KAKA'AKO BROWNFIELDS
Lab: SENTINEL, INC. (SENTIN)
Reviewer: Stan Kott, ESAT/ICF-LDC

Date: October 17, 2001

Concentration in mg/Kg

Analysis Type: Low Concentration Soil

Samples For Total Metals

Station Location : Sample ID : Collection Date :	SS33 MY05Y8 06/27/2001	MY05Y8 06/27/2001		MY05Z6 06/27/2001			SS13 MY05Z7 06/27/2001			SS21 MY05Z8 06/27/2001			SA08 MY0609 06/28/2001			SB08 MY0610 06/28/2001			SS06 MY0611 06/28/2001		,
PARAMETER	Result	Val	Com		Val	Com	Result	Va!	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM			*******	20800			2410		S antonius en la	6260			4090			501			16500		
ANTIMONY	3.5L	J	AC.	3.7L	J	AÇ	0.68L	J	AC .	1.11	· J	AC*	0.98L	J.	AC	0.59U	J	С	11.1L	J	AC
ARSENIC	20.3	J	CD	5.9	J	CD	5.0	J	CD	5.5	J	CD	6.2	J	CD	6.7	J	CD	14.3	J	CD
BARIUM	171			290			14.9L	J.	Ą	49.1			55.5	- 4		6.1L	J	" A "	1690		
BERYLLIUM	0.070U			0.070∪			0.070U			0.070U			0.070U			0.070U			0.070∪		0.00000-900000000
CADMIUM	0.21L	J	AB	2.0			0.14U			0.14U			0.130			0.14U			6.1		
CALCIUM	125000	J	E	151000	J	E	331000	J	E.	305000	J	E	260000	J	Ε	347000	J	Е	149000	J.	E
CHROMIUM	73.9	J	CD	67.8	J.	-CD	12.6	J	CD	21.7	J,	CD	12.3	J	CD	2.8	J	CD	47.9	J	CD
COBALT .	24.4			28.4	Succession of the second		0.23U	Militaria menerana an		8.3L	J	Α	3.4L	J	Α	0.24U			23.0	ether min	
COPPER	151	J,	CD	j113	IJ	CD	7.7	J	CD	25.9	J.	CD	53.1	J	CD	1.4L	* J	ACD	19000	J)	CD
IRON	55000		Market and the second	38300			3840			10900			8190	***************************************	- XXXII oo oo daa aa aa aa aa aa aa aa aa aa aa aa aa	1850	san anna anna iona		42400	************	
LEAD	228	IJ	D	1190	J	D	20.9	J	D	73.8	J.	D	62.4	Ĵ	Ď	1.2	J	D.	2540	j	D
MAGNESIUM	14400	Name and American		17100	Management (1000)		23200			18600			14900			17100			22500		i
MANGANESE	620	_1::		707	1.		106			215			145			50.3			1100		
MERCURY	0.060U	J	C	0.10L	J	AC	0.060∪	J	С	0.060U	J	С	0.060L	J	AC	0.060U	J	С	0.10L	J	AC
NICKEL	93.9			105			8.5L	J	A'	25.1			18:3			4.0L	J.	Α.	333		
POTASSIUM	760L	J	Α	1850		***************************************	200L	J	Α	338L	J	Α	734L	J	A	138L	J	Α	4620		
SELENIUM	- 0.47U	J	В	0.48U			0.46U			0.46U			0.43U			0.47U			0.47U		
SILVER	0.12U	J	С	0.12U	J	С	0.11U	J	С	0.12∪	J	C .	0.11U	J	С	0.12U	J	С	0.12U	J	С
SODIUM	, 1880		3.5	3920	7		2490			2490			3490			3590			11800		
THALLIUM	0.80U	J	С	0.82Ų	J	C	0.78∪	J	Ç	0.79U	J	С	0.73U	j	С	0.80∪	J	С	0.79U	J	С
VANADIUM	57.4			70.2			11.9			26.8			18.5			5.4L	J	Α	48.5		
ZINC	352			591			23.5			130			104			4.7L	J	Α	12100		
Percent Solids	85.4	+ 3		83.1			87.2			86.3			91.9		. 7	84.9			85:7		

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

SDG No.: MY05Y8

Table 1A

Site: KAKA'AKO.BROWNSFIELDS

Lab: SENTINEL, INC.
Reviewer: Stan Kott, ESAT/ICF-LDC

Date: October 17, 2001

Concentration in mg/Kg

Analysis Type: Low Concentration Soil

Samples For Total Metals

. Station Location : Sample ID : Collection Date :	SA06 MY0612 06/28/2001			SB06 MY0613 06/28/2001			SB41 MY0615 06/28/2001	-		SB42 MY0616 06/28/2001			Lab Blank PBS			MDL			CRDL		
PARAMETER	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
ALUMINUM	7700			. 1390			9630			16700			13.6U			13.6			40		
ANTIMONY	6.5L	J	AC	0.62U	J	C	2020	J	·C	15.1	J	С	0.500			0.50		ca isali.	12.0		Bengalan ay
ARSENIC	7.3	J	CD	2.6	J	CD	35.8	J	CD	33.3	J	ÇD	0.52U	CRANCE CONTRACTOR CONT	Tonas de Calendario de Calenda	0.52	September (Salaha)	tituariumidae	2.0		700000000000000000000000000000000000000
BARIUM	394		4.5	9.8L	J	Α	391			698			0:140			0.14			40		
BERYLLIUM	0.070U			0.070U	SECTION SERVICE	***	0.070U	None and the	2,22,000	0.070U			0.060U		error whomas	0.06	-		1.0	TO THE REAL PROPERTY.	
CADMIUM	0:36L	J	Ą	0:15U			0.14U	J	В	0.14U	J	В	0.120	3 L		0.12			- 1.0		
CALCIUM	202000	J	E	338000	J ·	E	32700	J	E	128000	J	E	8.1L	J	Α	5.1	***************************************		1000	70.700000000000000000000000000000000000	201000000000000000000000000000000000000
CHROMIUM	30:0	IJ	CD	20.1	J	CD	56.7	J	CD	78.5	J	מס	0.120			0.12	1.		2.0		
COBALT	8.4L	J	Α	0.25U	*************	was all the later to the later	20.6			· 23.8			0.20U			0.20			10.0		
COPPER	139	j.	CD	2.7L	j	ACD	4950	J	°CD	720	J	CD	0.20U			0.20			5.0		
IRON	17800			1400			157000			99800			2.9U			2.9	Ī		20		
LEAD	820	Ü	D	1.3	J	D	21000	J۳	D.	1440	J	D	0.56U			0.56			0.60		
MAGNESIUM	21700			29000			5820			13400			5.4U			5.4			1000		<u> </u>
MANGANESE	513			39.1			710			833			0.060U			0.06			3.0		
MERCURY .	0.060U	J	С	0.06 <u>0</u> U	j	C	0.33	J	С	0.060U	J	c·	0.050U			0.05			0.10		
NICKEL	68.2			4.1L	i J	Α	210			426			0.220			0.22			8.0		
POTASSIUM	1660			219L	J	Α	1980			2500			2.3U			2.3			1000		
SELENIUM	0.47∪			0,490		,	0.59L	J	AB	0.47U	j	В	0.40U			0.40			1.0		
SILVER	0.12U	J	С	0.12U	J	C.	1.4L	J	ABC	5.1	J	С	0.10U			0.10			2.0		
SODIUM	4420	1.5		3070			5580			5720			94.90			94.9			1000		
THALLIUM	0.80U	J	С	0.84U	J	С	2.0L	J	ABC	0.81U	J	С	∙ 0.68U			0.68		:	2.0		
VANADIUM	26.6	*** ** **		3.3L	J	Α	- 25.6			33.2			0.200			0.20			10.0		
ZINC	795			6.1		***************************************	3610			2850	ar: v.v.o.o.uu		0.15L	J	Α	0.12	- married and property	- cittles (2,00), 200	4.0		
Percent Solids	84.8			81.3			83.8	14		84.4			N/A			"N/A			N/A		

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

MDL - Method Detection Limit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR INORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared in accordance with the document USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994.

- U The analyte was analyzed for, but was not detected above the level of the reported value. The reported value is either the sample quantitation limit or the sample detection limit for all the analytes except Cyanide (CN) and Mercury (Hg). For CN and Hg, the reported value is the Contract Required Detection Limit (CRDL).
- L Indicates results which fall between the sample detection limit and the CRDL. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- The associated value is an estimated quantity. The analyte was analyzed for and was positively identified, but the reported numerical value may not be consistent with the amount actually present in the environmental sample.
- R The data are unusable. The analyte was analyzed for, but the presence <u>or</u> absence of the analyte can not be verified.
- UJ A combination of the "U" and the "J" qualifier. The analyte was analyzed for but was not detected. The reported value is an estimate and may be inaccurate or imprecise.

In Reference to
Case 29448 SDG No.: MY05P8, MY05R8, MY05T8,
MY05X0, MY05Y2, and
MY05Y8

Contract Laboratory program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Aso Log # 98.418
Ogden's Project # 3-1912-0005

Prepared By Approved By

		1	2	3 4	5	6
				-		
	Data	Invoice Date	amt.	notels)	Cum, Balance	
1	1/3/00				99,966=	
2	1.77					
3	3/1/00	2/15/00	1532687	Involve# 0/2/14	P4 639 13	85%
5	3/20/00	3/14/00	8420 45	Invaice # 0/22557 0x12 3/20/29 CL, CM	76 218 65	76%
7	6/15/00	6/13/00	4065.83	Javos C # 0/2672	7221285	72%
8	3/31/00(410)	3/31/00	90751	Invoice # 012486	7/305 Stan	to require the
10					- apl	weds from vel
11 12 13 13 14 15 15 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	67/18/00	6/31/00	59074	Invair # 012962	707/452	to request from very
12						
14				0.921		
15		12/80	348	13819	(292)	
16						
17						
18		-				
19						
20						
21						
22						
23						
24						
25						
27						
28						
29						
10	N.					
31						
32						
33						
34						
35						
36						
37						
38						
39						
10						

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

De DMG

5510 Morehouse Drive San Diego, CA 92121 PA \$58 458 9044 Fax 858 458 0943

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. ROOM 206 HONOLULU, HI 96814 INVOICE NO.: 013819 INVOICE DATE: 12/12/00 CONTRACT NO.: ASO LOG # 98 PROJECT NO.: 3-1962-0005

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8

FOR SERVICES PERFORMED THROUGH 11/17/00.

CURRENT PROJECT CHARGES STATE OF HAWAII EXCISE TAX (PRIME)	\$ \$	334.83 13.95
TOTAL DUE THIS INVOICE	\$	348.78
CONTRACT STATUS: TOTAL CONTRACT AMOUNT\$ TOTAL INVOICED THRU 11/17/00\$ CONTRACT AMOUNT REMAINING\$	99,966.00 37,034.75 62,931.25	

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

Payment Approved: Goods/Svs. Satisfactorily Received:

Date Goods/Svs. Rec'd NOV - 17 2000

Date Invoice Rec'd. DEC - 15 -2000

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 PAGFax 858 438 0943

INVOICE NO. : 013819

HAWAII DEPARTMENT OF HEALTH

ATTN ACCOUNTS PAYABLE

INVOICE DATE: 12/12/00 CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

SALARY AND EXPENSE

PROJECT PLANNING INSIDE HAWAQII

			Cost/Qty	•	Rate	Amount
PHONE SPRINT			and the second s	* * * * * * * * * * * * * * * * * * * *		
SPRINI	7480CT	10/15/00	.12			
	r a r				1 2000	
•		***	.12	en en en en en en en en en en en en en e	1.2000	.14
	· · · · · · ·		**	Total		.14
					- -	
A Section 1						.14
FIELD INVESTI	GATION IN	SIDE HAWAII				40
				· · · · · · · · · · · · · · · · · · ·		
PROFESSIONAL	SERVICES		Hours	RATE		Amount
FIELD TECHNI KOTOSHIRODO		11/16/00	1.00			
	· · · .	***	1.00	50.00		50.00
				*	•	
			1.00			50.00
EXPENSES						
**************************************	crinni tec		Cost/Qty	• .	Rate	Amount
MATERIALS &	POLETTER					

Ogden EESC Account Number: 1290918896 NationsBank ABA Number: 111:0001

CGDEN ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 PAGEx 858 458 0943

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO.: 013819 INVOICE DATE: 12/12/00 CONTRACT NO.: ASO LOG # 98 PROJECT NO.: 3-1962-0005

SALARY AND EXPENSE DETAIL

FIELD	INVESTIGATION	INSIDE	HAWATT	(Contt)

MATERIALS & SUPPLIES	Cost/Qty	Rate Amount
TEG - TRANSGLOBAL ENVIRONMENTA R01012 10/12/00		
*** ***	237.24	1.2000 284.69
	** Total	284.69
		284.69
	** Total Project 3-1962	-0005 334.83

From:

Self < EHANVL1/DCOSGROVE>

To:

cmorita

Subject:

Ogden's budget

Copies to:

bhataoka

Date sent:

Mon, 20 Nov 2000 11:39:51 -1000

Hi, Clyde-

As you recall, Ogden submitted a letter a couple of months ago outlining costs incurred that were not anticipated in their proposal (e.g. Encore samplers, jars/bottles). Based on Ogden's November 2000 invoice, there could be an overrun of over \$12,000. I calculated this estimate based on the assumption that Tasks 1 and 2 (project planning & planning docs) are complete and that Tasks 3 through 6 (field investigation through reporting) have not been conducted yet. Note that \$3000 of that projected overrun is for purchase of Encore samplers and bottles/jars.

Just a heads up. Eric indicated earlier that they are overbudget on the earlier tasks (in part at least because of the unanticipated expenses such as Encore samplers) and that they hope that underruns in subsequent tasks will make up for overruns on earlier tasks. I do not know what the contract allows regarding overruns, if the project ends up going overbudget; we can deal with that if the time comes, but be aware that the possibility exists. If there is anything we should be making sure that Ogden knows about in the event that the project goes over budget, we should inform them now instead of waiting to see if it happens. Its good if everyone knows the rules up front.

- Dawn

From:

"Wetzstein, Eric, E." <eewetzstein@oees.com>

To:

'Dawn Cosgrove - HEER' <dcosgrove@eha.health.state.hi.us>

Subject:

RE: invoices, Kakaako Unit 8

Date sent:

Mon, 20 Nov 2000 10:08:13 -1000

Hi Dawn,

En Novative Technologies supplies the Encore VOC samplers because the VOC method was changed during review of the SAP. TEG supplied the necessary bottles and sample containers since we have learned the EPA will not be providing them. Portions of these cost are detailed in that "out of scope cost memo" I sent you.

Eric

----Original Message----

From:

Dawn Cosgrove - HEER [SMTP:dcosgrove@eha.health.state.hi.us]

Sent:

Monday, November 20, 2000 8:56 AM

To:

eewetzstein@oees.com

Subject:

invoices, Kakaako Unit 8

Hi, Eric -

A couple of questions on Ogden's invoices for Kakaako Unit 8:

- 10/13/00 invoice (invoice no. 013469): What is the "materials and supplies" to En Novative Technologies, Inc. on 9/7/00 for \$2023.22?
- 11/14/00 invoice (invoice no. 013777): What is "materials and supplies" to TEG on 9/29/00 for \$976.25?

--- Dawn Dawn Cosgrove

Hawaii Department of Health - HEER

Voluntary Response Program

Remedial Project Manager

De DMC 1/20/00

Frital + returns
to Stan for
Payment

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 ₽≨82858 458 10943

INVOICE NO.: 013777
INVOICE DATE: 11/14/00
CONTRACT NO.: ASO LOG # 98
PROJECT NO.: 3-1962-0005

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. ROOM 206 HONOLULU, HI 96814

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8

FOR SERVICES PERFORMED THROUGH 10/27/00.

CURRENT PROJECT CHARGES	\$	1,715.17
STATE OF HAWAII EXCISE TAX (PRIME)	\$	71.46
TOTAL DUE THIS INVOICE	\$	1,786.63
	=====	========
CONTRACT STATUS:		
TOTAL CONTRACT AMOUNT\$	99,966.00	
TOTAL INVOICED THRU 10/27/00\$	36,685.97	
CONTRACT AMOUNT REMAINING\$	63,280.03	

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

Goods/Svs. Satisfactorily Received:
Ву:
Date Goods/Svs. Rec'd
Date Invoice Rec'd. //- /7- 00

Remittance Address: Ogden EESC P.O. Box 840427 Dallas. TX 75284-0427

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 458 0943

PAGE:

2

INVOICE NO. : 013777 INVOICE DATE: 11/14/00

CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

SALARY AND EXPENSE DETAIL

PROJECT PLANNING INSIDE HAWAQII

EXPENSES		Cost/Qty		Rate	Amount
PHONE SPRINT		-,		, and a second s	
748SEP	09/16/00	5.74			
	***	5.74		1.2000	6.89
		**	Total		6.89
		•			
					6.89
PROJECT DOCUMENTS INSI	DE HAWAII				
			•		
PROFESSIONAL SERVICES		Hours	RATE		Amount
FIELD TECHNICIAN KOTOSHIRODO, JAN H	10/17/00	.50 .50	50.00		25.00
•	•				
		.50			25.00

FIELD INVESTIGATION INSIDE HAWAII

Remittance Address: Ogaen EESC P.O. Box 840427 Dallas, TX 75284-0427 Wire Transfers: Ogden EESC

Account Number: 1290918896 NationsBank ABA Number: 111000012

INVOICE NO. : 013777

HAWAII DEPARTMENT OF HEALTH

ATTN ACCOUNTS PAYABLE

INVOICE DATE: 11/14/00

CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

SALARY AND EXPENSE DETAIL

FIELD INVESTIGATION INSIDE HAWAII

(Con't)

	-		Hours	RATE		Amount
TECHNICIAN C	ATEGORY 3	32				
YAMASATO, R	EID K	10/05/00	1.00		:	:.
		, * ***	1.00	8.5000	8.50	27.03
	•		•	<i>:</i>		
			1.00		8.50	27.03
•	."		. 1.00		0.30	27.03
EXPENSES			<i>:</i>	·		
.*			Cost/Qty		Rate	Amount
MATERIALS &	SUPPLIES		, ~ ₁	:		
TEG - TRANSG		VIRONMENTAL				
		·	813.54			
	LOBAL ENV	·	813.54			
	LOBAL ENV	·	813.54 813.54		1.2000	976.25
	LOBAL ENV	09/29/00			1.2000	976.25
	LOBAL ENV	09/29/00		Total	1.2000	976.25 976.25
	LOBAL ENV	09/29/00	813.54	Total	1.2000	
	LOBAL ENV	09/29/00	813.54	Total	1.2000	976.25
	LOBAL ENV	09/29/00	813.54	Total	1.2000	

PROJECT DOCUMENTS - OUTSIDE HI

PROFESSIONAL SERVICES

Hours

STAFF TOXICOLOGIST

VALENZIA, JENNIFER R 08/03/00

4.00

Remittance Address: Ogden EESC P.O. Box 840427 Dallas, TX 75284-0427

INVOICE NO.: 013777

INVOICE DATE: 11/14/00

CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

SALARY AND EXPENSE

PROJECT DOCUMENTS - OUTSIDE HI

PROFESSIONAL SERVICES			
	Hours	RATE	Amount
STAFF TOXICOLOGIST			
VALENZIA, JENNIFER R 08/04/00	4.00		
***	8.00	85.00	680.00
•			
	8.00		680.00
	** Total	Project 3-1962-0	1,715.17

ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 458 0943

PAGE:

INVOICE NO.: 013469 INVOICE DATE: 10/13/00

CONTRACT NO.: ASO LOG # 98 PROJECT NO. : 3-1962-0005

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. ROOM 206 HONOLULU, HI 96814-4912

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8 98-418

FOR SERVICES PERFORMED THROUGH 09/29/00.

CURRENT PROJECT CHARGES 2,992.62 STATE OF HAWAII EXCISE TAX (PRIME) TOTAL DUE THIS INVOICE 3,117.32

CONTRACT STATUS:

TOTAL CONTRACT AMOUNT.....\$ 99,966.00 TOTAL INVOICED THRU 09/29/00....\$ 34,899.34 CONTRACT AMOUNT REMAINING......\$ 65,066.66

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

Payment Approved: Goods/Şvs, Satisfactorily Received:

Date Goods/Svs. Rec'd.

Wire Transfers:

Date Invoice Rec'd. 10-19-00

Remittance Address: Ogden EESC P.O. Box 840427 Dallas, TX 75284-0427

Oaden EESC Account Number: 1290918896 NationsBank ABA Number: 111000012

PAGE:

INVOICE NO. : 013469

INVOICE DATE: 10/13/00

CONTRACT NO .: ASO LOG # 98

PROJECT NO. : 3-1962-0005

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

SALARY AND EXPENSE

PROJECT PLANNING INSIDE HAWAQII

PROFESSIONAL	SERVICES				
			Hours	RATE	 Amount
CONTRACTS AD	MINISTRATO	R		• *	•
RUSSELL, DE	NISE K	09/29/00	.50	•	
	• •	***	.50	60.00	30.00
	. •	. •		,	
				- •	
			.50		. 30.00
	-		•		

EXPENSES	Cost/Qty	:	Rate	Amount
REPRODUCTION/GRAPHICS PHOTOCOPY LOG - HAWAII				
. 09XER2 09/08	3/00 333.52			
**	** 333.52		1.2000	400.22

* Total 400.22

400.22

PROJECT DOCUMENTS INSIDE HAWAII

PROFESSIONAL SERVICES

Hours

FIELD TECHNICIAN

KOTOSHIRODO, JAN H Remittance Address:

08/30/00

1.00

Wire Transfers: Ogden EESC

Account Number: 1290918896 NationsBank ABA Number: 111000012

Ogden EESC P.O. Box 840427 Dallas, TX 75284-0427

ORIGINAL

ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 458 0943

PAGE:

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO. : 013469 INVOICE DATE: 10/13/00 CONTRACT NO.: ASO LOG # 98 PROJECT NO. : 3-1962-0005

Rate

SALARY AND EXPENSE DETAIL

PROJECT DOCUMENTS INSIDE HAWAII (Con't)

PROFESSION	VAL S	ERV.	ICES

		Hours	RATE		Amount
FIELD TECHNICIAN			•		
KOTOSHIRODO, JAN H	08/31/00	.50		•	
KOTOSHIRODO, JAN H	09/06/00	.50			
KOTOSHIRODO, JAN H	09/07/00	.50	•	•	* • • • • • • • • • • • • • • • • • • •
KOTOSHIRODO, JAN H	09/08/00	1.00	•		
KOTOSHIRODO, JAN H	09/11/00	3.50			-
KOTOSHIRODO, JAN H	09/14/00	2.50			···
KOTOSHIRODO, JAN H	09/15/00	.50			•
	***	10.00	50.00		500.00
	•.		•		
	-				
		10.00			500.00
	•				•
EXPENSES				•	

Ε

POSTAGE/DELIVE	ERY		· .=		·. · · · · · · · · · · · · · · · · · ·
DHL WORLDWIDE	EXPRESS	٠.	٠.		
-	674199	09/02/00	32.32		
٠,					
		* * *	32.32	1.2000	38.78
POSTAGE LOG -	IIAWAH	14			
	SEP00	09/08/00	.33		
					•
		***	.33	1,2000	.40

Cost/Qty

Total

Amount

Remittance Address: Ogden EESC P.O. Box 840427 Dallas. TX 75284-0427

CGDEN ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 458 0943

PAGE:

4

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO. : 013469 INVOICE DATE: 10/13/00

CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

SALARY AND EXPENSE DETAIL

FIELD INVESTIGATION INSIDE HAWAII

EXPENSES	c cuppi tee	* .	Cost/Qty	Rate	Amount
MATERIALS OF EN NOVATIVE	SUPPLIES E TECHNOLO 07019	GIES, INC 09/07/00	1,686.02		
		* * *	1,686.02	1.2000	2,023.22
			** Total		2,023.22
					2,023.22
•			** Total Project 3-1	1962-0005	2,992.62

EN ENVIRONMENTAL AND ENERGY SERVICES

DC Dix 11/20/02 Instal+ return to Stanfor Payme

5510 Morehouse Drive

San Diego, CA 92121

858,458 9044 PAGE:

Fax 858 458 0943

INVOICE NO. : 013245

INVOICE DATE: 08/15/00

CONTRACT NO.: ASO LOG # 98 PROJECT NO. : 3-1962-0005

ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. ROOM 206

HAWAII DEPARTMENT OF HEALTH

HONOLULU, HI 96814

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8

FOR SERVICES PERFORMED THROUGH 07/28/00.

CURRENT PROJECT CHARGES STATE OF HAWAIT EXCISE TAX (PRIME) 983.72

TOTAL DUE THIS INVOICE

CONTRACT STATUS:

TOTAL CONTRACT AMOUNT.....\$ 99,966.00 TOTAL INVOICED THRU 07/28/00....\$ 30,266.19 CONTRACT AMOUNT REMAINING.....\$ 69,699.81

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

Payment Approved: Goods/Svs. Satisfactorily Received: Date Goods/Svs. Rec'd. Date Invoice Rec'd._

Remittance Address: Ogden EESC PO Box 84027 Dallas, TX 85284-0427

5510 Morehouse Drive San Diego, CA 92121 858 458 9044

PAGE:

Fax₂858 458 0943

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO.: 013245 INVOICE DATE: 08/15/00

CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

SALARY AND EXPENSE DETAIL

PROJECT PLANNING INSIDE HAWAQII

EXPENSES

Cost/Qty

Rate Amount

PHONE SPRINT

748JUN 06/16/00

3.10

3.10

1.2000 3

** Total

3.72

3..72

PROJECT DOCUMENTS INSIDE HAWAII

PROFESSIONAL SERVICES

Hours Rate FIELD TECHNICIAN KOTOSHIRODO, JAN H 07/10/00 2.00 07/13/00 2.50 KOTOSHIRODO, JAN H 07/14/00 1.00 KOTOSHIRODO, JAN H 07/20/00 KOTOSHIRODO, JAN H 07/21/00 KOTOSHIRODO, JAN H 2.50 07/24/00 3.00 KOTOSHIRODO, JAN H 07/26/00 1.00 KOTOSHIRODO, JAN H 50.00 14.50

Amount

725.00

725.00

14.50

Remittance Address: Ogden EESC PO Box 84027 Dallas, TX 85284-0427

5510 Morehouse Drive San Diego, CA 92121 858 458 9044

PAGE:

Fax \$58 458 0943

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO. : 013245 INVOICE DATE: 08/15/00 CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

SALARY AND EXPENSE DETAIL

REPORTING HAWAII

PROFESSIONAL SERVICES

Hours Rate Amount CONTRACTS ADMINISTRATOR RUSSELL, DENISE K 07/25/00 .25 .25 60.00 15.00 .25 15.00

PURCHASING OUTSIDE HI

PROFESSIONAL SERVICES

Hours Rate Amount CONTRACTS ADMINISTRATOR CRIDER, LISA J 06/12/00 4.00 4.00 60.00 240.00 4.00 240.00

** Total Project 3-1962-0005

983.72

Remittance Address: Ogden EESC PO Box 84027 Dallas, TX 85284-0427

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. ROOM 206 HONOLULU, HI 96814 5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 \$58,6943

INVOICE NO. : 012962 INVOICE DATE: 06/30/00

CONTRACT NO.: ASO LOG # 98
PROJECT NO.: 3-1962-0005

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8

ASO LOG NO 98418

FOR SERVICES PERFORMED THROUGH 06/30/00.

CURRENT PROJECT CHARGES	· * · · · · · · · · · · · · · · · · ·	\$ 578.38
STATE OF HAWAII EXCISE TAX	(PRIME)	12.36
TOTAL DUE THIS INVOICE	:	590.74
		==========

CONTRACT STATUS:

TOTAL CONTRACT	AMOUNT\$	99,966.00
TOTAL INVOICED	THRU 06/30/00\$	29,251.48
CONTRACT AMOUN	T REMAINING	70.714.52

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

INVOICE NO. : 012962

Rate

1.2000

HAWAII DEPARTMENT OF HEALTH

INVOICE DATE: 06/30/00

ATTN ACCOUNTS PAYABLE

CONTRACT NO.: ASO LOG # 98 PROJECT NO. : 3-1962-0005

SALARY AND EXPENSE DETAIL

PROJECT PLANNING INSIDE HAWAQII

EXPENSES

Cost/Qty PHONE SPRINT 748MAY 05/16/00 6.05 6.05 ** Total

REPRODUCTION/GRAPHICS PHOTOCOPY LOG - HAWAII.

> 06XER2 06/05/00 06XER5 06/05/00

352.80

7.52

360.32

1.2000

432.38

Amount

7.26

7.26

432.38

439.64

PROJECT PLANNING OUTSIDE HAWAII

WETZSTEIN, ERIC E 06/13/00

PROFESSIONAL SERVICES

Hours PROJECT MGR. - GEOLOGY/HYDROGEOLOGY

** Total

Amount

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO. : 012962 INVOICE DATE: 06/30/00

CONTRACT NO.: ASO LOG # 98 PROJECT NO.: 3-1962-0005

SALARY AND EXPENSE DETAI	S	Α	L	Α	R	Y	· A	N	D	Ε	X	P	E	N	S	E	D	E	T	Α	Ι]
--------------------------	---	---	---	---	---	---	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

	•					•
PROJECT PLANNIN	G OUTS	IDE HAWAII	(Con't)			
			;			•
PROFESSIONAL SE	RVICES					•
			Hours	RATE		Amount
PROJECT MGR	GEOLO	Y/HYDROGEOI				,
WETZSTEIN, ER		•	.50	·		
WETZSTEIN, ER	IC E	06/16/00				
		***	.50	110.00		55.00
		·			· ·	
			.50			55.00
	MC TNCT		•			
PROJECT DOCUMEN	TS INSI	DE HAWAII	·			
			. 	٠	:	
PROFESSIONAL SE	RVICES					•
			Hours	RATE		Amount
GEOLOGIST		•				
DOMINGO, CHER	ILYN M	05/12/00	1.50			
		***	1.50	50.00	•	75.00
		•			•	
	4					
	•		1.50	I		75.00
BYDDYGEG			•	•		
EXPENSES			a /o		Daha	Amount
POSTAGE/DELIVE	v		Cost/Qty		Rate	Amound
UNITED COURIER		ES INC				
		05/07/00	7.28			;
•						•
		***	7.28		1.2000	8.74
		•	**	Total	•	8.74

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO. : 012962 INVOICE DATE: 06/30/00

CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

SALARY AND EXPENSE DETAIL

PROJECT DOCUMENTS INSIDE HAWAII

Cost/Qty

Rate

POSTAGE/DELIVERY

** Total Project 3-1962-0005

578.38

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. **ROOM 206** HONOLULU, HI 96814

INVOICE NO.: 012672 INVOICE DATE: 06/13/00 CONTRACT NO.: ASO LOG # 98 PROJECT NO. : 3-1962-0005

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8

FOR SERVICES PERFORMED THROUGH 05/26/00.

CURRENT PROJECT CHARGES 3,850.00 STATE OF HAWAII EXCISE TAX (PRIME) 155.83 TOTAL DUE THIS INVOICE 4,005.83 CONTRACT STATUS: 99,966.00 TOTAL CONTRACT AMOUNT.....\$ TOTAL INVOICED THRU 05/26/00....\$ 28,660.74 CONTRACT AMOUNT REMAINING......\$ 71,305.26

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

Payment Approved: Goods/Sys, Satisfactorily Received:

Date Goods/Svs. Rec'd MAY 2 6 2000

JUN 15 2000 Date Invoice Rec'd.

Remittance Address: Ogden EESC PO Box 84027 Dallas, TX 85284-0427

INVOICE NO.: 012672

INVOICE DATE: 06/13/00

HAWAII DEPARTMENT OF HEALTH

ATTN ACCOUNTS PAYABLE

CONTRACT NO.: ASO LOG # 98 PROJECT NO. : 3-1962-0005

SALARY AND EXPENSE DETAIL

PROJECT DOCUMENTS INSIDE HAWAII

(CON'T)

DDODDE	CIONINI	SERVI	CEC
PRIJERS	SICINAL	SHRVI	

ADMINISTRATIVE CLERK		Hours	RATE		Amount
YANAGI, GREG M	05/19/00	.50		1 7 ,	
•	***	.50	30.00		15.00
		٠.	•		
			`• .	•	
		75.00	·•		3,740.00

Total Project 3-1962-0005

3,850.00

STATE OF PAWAII REQUISITION & PURCHASE ORDER DEPARTMENT OF HEALTH

HTH 849

Hazard Evaluation and Emergency Response Office

The State of Hawaii is an EQUAL EMPLOYMENT OPPORTUNITY and AFFIRMATIVE ACTION employer.

ORGANIZATION

XXXXXXXXXXXXXX

FUNCTION AND ACTIVITY

NOTICE TO VENDORS

Conditions of purchase are listed on the back side of this purchase order. Please read carefully. Payments may be delayed if all steps are not followed.

OGDEN ENVIRONMENTAL AND ENERGY SERVICES CO.. INC. 680 Iwilei Road, Suite 660 Honolulu, HI 96817

00610648 Date 08 25 99 Deliver Before . **DELIVERY ADDRESS** BILLING ADDRESS

919 Ala Moana Blvd., Room 206 Honolulu, HI 96814

QUAN.	UNIT	DESCRIPTION	OBJECT	UNIT PRICE	AMOUNT
		To provide non-emergency environmental response actions during incidents where a release of known and unknown hazardous substances presents a threat to the public health and/or the environments, for the peri July 1, 1999 to June 30, 2000.	7190 od		101,000.0
		# (8-418-m) 10 10 10 10 10 10 10 10 10 10 10 10 10	RECEIVED	+	220, 000 321, 000
CM OODS/SERV	DA	18 Inv. 012486 - \$1 907.59		ZED SIGNATURE	¥65.e

23	3141		0	1		Manager garde to terrace or the control of the cont		***************************************							
SFX	TC	F	YR	APP	D	OBJECT	СС	PROJ NO.	PH	ACT	ESTIMATED COST		ACTUAL COST	Only	DATA
XX	XXX	X	XX	XXX	XX	XXXX	XXXX	XXXXXX	XX	XXX		XX	XXXXXXXXXXXXXX	190752	XXXX
01	621	S	00	236	H	7190		000249	99	371	3,000 0	0	-0	101	, TE
02	621	S	00	342	Н	7190		000322	_	_	1010	00		- un belled	
03	621	G	00	342	H	7190		000323	00	371	55,000	00	B	to lent 00	
04	061	S	00			7190		000000	00	371	220, 000 0	D	0	_	
	†					1									
															e' double le montant

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 458 0943

PAGE:

INVOICE NO. : 012486 INVOICE DATE: 04/03/00

CONTRACT NO.: ASO LOG # 984/8

PROJECT NO. : 3-1962-0005

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. ROOM 206 HONOLULU, HI 96814

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8

FOR SERVICES PERFORMED THROUGH 03/31/00.

CURRENT PROJECT CHARGES STATE OF HAWAII EXCISE TAX (PRIME)	\$ \$	871.29 36.30
TOTAL DUE THIS INVOICE	\$	907.59
	=====	
CONTRACT STATUS:		
TOTAL CONTRACT AMOUNT\$	99,966.00	
TOTAL INVOICED THRU 03/31/00\$	24,654.91	•

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

CONTRACT AMOUNT REMAINING.....\$ 75,311.09

Payment Approved Goods/Svs. Satisfa	: ICtorily Received:
Ву:	
Date Goods/Svs. R	ec'd
Date Invoice Rec'd	

Remittance Address: Ogden EESC PO Box 84027 Dallas, TX 85284-0427

ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 458 0943

PAGE:

.3

INVOICE NO. : 012486 INVOICE DATE: 04/03/00

CONTRACT NO.: ASO LOG # 984/8

PROJECT NO. : 3-1962-0005

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

SALARY AND EXPENSE DETAIL

PROJECT PLANNING OUTSIDE HAWAII

PROFESSIONAL SERVICES			•	
		Hours	Rate	Amount
PROJECT MGR GEOLO	GY/HYDROGEOLO	GY		
WETZSTEIN, ERIC E	03/17/00	2.00		
WETZSTEIN, ERIC E	03/24/00	3.50		
	***	5.50	110.00	605.00
SR. CERTIFIED INDUST DAGGETT, DENISE L		ST 1.50 1.50	130.00	195.00
	•	·		
		7.00		800.00
		** Total	Project 3-1962-000	5 871.29
· · · · · · · · · · · · · · · · · · ·		•	· ·	

STATE OF HOWAII REQUISITION & PURCHASE ORDER

DEPARTMENT OF HEALTH

HTH 849

Hazard Evaluation and Emergency Response Office

ORGANIZATION

FUNCTION AND ACTIVITY

NOTICE TO VENDORS

Conditions of purchase are listed on the back side of this purchase order. Please read carefully. Payments may be delayed if all steps are not followed.

OGDEN ENVIRONMENTAL AND ENERGY SERVICES CO., INC. 680 Iwilei Road, Suite 660 Honolulu, HI 96817

00610648 Date 08 25 99 Deliver Before **DELIVERY ADDRESS** INVACE BILLING ADDRESS

919 Ala Moana Blvd., Room 206 Honolulu, HI 96814

The State of Hawaii is an EQUAL EMPLOYMENT OPPORTUNITY and AFFIRMATIVE

		and minorities in all phases of employment.			
QUAN.	UNIT	DESCRIPTION	OBJECT	UNIT PRICE	AMOUNT
		To provide non-emergency environmental response actions during incidents where a release of known and unknown hazardous substances presents a threat to the public health and/or the environments, for the public large statements and large statements.	ic		101,000.0
		# 68-418-mc OF 700 NO. 98-418-m1 ASO LOG NO. 98-418-m1	ADMIN SYS	+	220, 000 321, 000
cm	REQ	VOUCHER NUMBER 3-30-00	n e. Ol	amura	eking n
OODS/SERV	ICES RECEIVE	D IN GOOD ORDER AND CONDITION BY DATE	AUTHORIZE	ED SIGNATURE	
ER C	XXXXX	FOR DEPARTMENT 18 SFX XX 02 91	USE ONLY		
				OCT MID	ORT DEPT DATA

															_	-		
SFX	TC	F	YR	APP	D	OBJECT	CC			ACT	ESTIMATE			ACTUAL COST		1 .	R	OPT DEPT DATA
ΧX	XXX	Х	XX	XXX	ХX	XXXX	XXXX	XXXXXX	хх	XXX	XXXXXXXX	XXX	XX	XXXXXXXXXX	XX	Х	X	XXXXXXXXXX
01	621	S	00	236	H	7190	18	000249	99	371	3,	000	00					
02	621	S	00	342	Н	7190		000322			43,	000	00	8420.	45	1		
0.3	621	· G	00	342	Ħ	7190		000323			55,	000	00	V.				
24	-021.	S	DD	323	H	7190	-	000000			220.	000	da	1 2 10	1	L		
											•			1	1		\sqcup	8 7 2 2 2
								. S.					-		<u> </u>	L	\sqcup	
															i			- a) - decard (c) these decard
_	_	_	-	-		_		-	-	-								

ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 458 0943

PAGE: 1

INVOICE NO. : 012255 INVOICE DATE: 03/14/00 CONTRACT NO.: ASO LOG # 98 PROJECT NO. : 3-1962-0005

Payment Approved:

Goods/Svs. Satisfactorily Received:

Date Goods/Svs. Rec'd 2-25-170 Date Invoice Rec'd. MAP. 2 0 2000

em

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. ROOM 206 HONOLULU, HI 96814

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8

ASO LOG NO 98418

FOR SERVICES PERFORMED THROUGH 02/25/00.

CURRENT PROJECT CHARGES 8,115.23 STATE OF HAWAII EXCISE TAX (PRIME) 305.22 TOTAL DUE THIS INVOICE 8,420.45

CONTRACT STATUS:

99,966.00 TOTAL CONTRACT AMOUNT.....\$ TOTAL INVOICED THRU 02/25/00....\$ 23,747.32 76,218.68 CONTRACT AMOUNT REMAINING.....\$

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

Remittance Address: Ogden EESC PO Box 84027 Dallas, TX 85284-0427

PAGE:

3

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO.: 012255 INVOICE DATE: 03/14/00 CONTRACT NO.: ASO LOG # 98 PROJECT NO.: 3-1962-0005

SALARY AND EXPENSE DETAIL

PROJECT PLANNING OUTS	IDE HAWAII	(Con't)		•	* - *	
PROFESSIONAL SERVICES						
PROTESTORME SERVICES		Hours	RATE			Amount
ECOLOGICAL RISK	•	HOULD			•	- inioquic
SCATOLINI, SUSAN R	02/04/00	1.00				
SCATOLINI, SOSAN R	***		75.00			75.00
		,1.00	73.00		•	, ,3.00
PROJECT MGR GEOLOG	GY/HYDROGEOL	OGV		•		
WETZSTEIN, ERIC E		2.50			÷	
WETZSTEIN, ERIC E		.50	,			
	***		110.00			330.00
SCHOTTLE, ROLF G	02/04/00					
Delica 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	***		110.00		•	385.00
• •	•	3.50			•	5,550.00
	•		•			
		7.50				790.00
•	•					
PROJECT DOCUMENTS INSI	DE HAWAII				•	
						• .
PROFESSIONAL SERVICES		•				
		Hours	RATE			Amount
WORD PROCESSING						
MONTGOMERY, WILLIAM	02/04/00	9.50				•
	***	9.50	45.00			427.50
FIELD TECHNICIAN					•	•.*
TOMA, STEFFANY M	02/04/00	25.00				
	***	25.00	50.00		-	1,250.00
KOTOSHIRODO, JAN H	02/04/00	14.00				
•	***		50.00		•	700.00
•						

Remittance Address: Ogden EESC PO Box 84027 Dallas, TX 85284-0427

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 Fax 858 458 0943

PAGE:

5

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

INVOICE NO.: 012255 INVOICE DATE: 03/14/00 CONTRACT NO.: ASO LOG # 98 PROJECT NO.: 3-1962-0005

SALARY AND EXPENSE DETAIL

DATA EVALUATION/ANALYSIS IN HAWAII (Con't)

DPOFESSIONAL SERVICES

PROFESSIONAL SERVICES		77	RATE		Amount
CADD / DRAFTING	·	Hours	KAIL		Amount
RUBIN, DAVID N	02/04/00	5.25	•		
	***	5.25	50.00		262.50
	·			•	
	*	5.25	•	· .	262.50
		** Total	Project	3-1962-0005	8,115.23

STATE OF WAI REQUISITION & PURCHASE ORDER DEPARTMENT OF HEALTH

HTH 849

azard Evaluation and Emergency Response Office

FUNCTION AND ACTIVITY

NOTICE TO VENDORS

Conditions of purchase are listed on the back side of this purchase order. Please read carefully. Payments may be delayed if all steps are not followed.

The State of Hawaii is an EQUAL EMPLOYMENT OPPORTUNITY and AFFIRMATIVE ACTION employer. We encourage the

OGDEN ENVIRONMENTAL AND ENERGY SERVICES CO., INC 680 Iwilei Road, Suite 660 Honolulu, HI 96817

participation of women and minorities in all phases of employment

00610648 ORD Date 08 25 99 Deliver Before ___ **DELIVERY ADDRESS** SI Kakabko Unit 8 Invoice BILLING ADDRESS

919 Ala Moana Blvd., Room 206 Honolulu, HI 96814

DUAN.	UNIT	I minorities in all pria	ses of employment. DESCRIPT	ION		OBJECT	UNIT PRICE	AMOUNT
IUAN.	UNII					0.000		
		response release substant health	ide non-emergency actions during of known and unk ces presents a thand/or the environgly 1999 to June 30,	nown hazardo reat to the nments, for	ere a us public	7190 od		101,000.00
		ASO LOG	# 98- Pos No. 98-418-n/	HONOLUGE ALTH	.99 AUG 31 A8:15	RECEIVED	+	220, 000 321, 000
<u>: m</u>	REQ	UISITIONER	TELEPHONE	VOUCHER NUMBER	HENTICATED BY:	4 10		751.0
	200	-	3-16-00		The	•	CANIM MAN	
DS/SER	VICES RECEIVE	D IN GOOD ORDER	AND CONDITION BY DATE			AUTHORIZ	ZED SIGNATURE	
///////	REQUISITION	(O)//////		FOR DEPA	RTMENT USE O	NLY		
RC	R 99-0	18/////						
All the	VENDOR	OFY I	THE PARTY AND AND AND THE SAME PARTY AND AND AND AND AND AND AND AND AND AND					
NUM X X X X		X X	regions are sense may be a secure for the regions of an income the sense of the sen					
		02						
:331	41	91		. **				

x	TC	F	YR	APP	D	OBJECT	CC	PROJ NO.	PH	ACT	ESTIMATED COST		ACTUAL COST		М	R	OPT DEPT DATA
X	XXX	X	хх	xxx	хх	XXXX	xxxx	XXXXXX	ХX	XXX	XXXXXXXXXX	XX	XXXXXXXXXX	ХХ	Х	X	XXXXXXXXXX
1	621	S	00	236	H	7190		000249	99	371		00	0				
2	621	S	00	342	H	7190		000322			43,000	00	15,326.	87	_		
3	621	S	00	342	H	7190		000323	00	371	55,000	00	-0		-	_	
4		S	00	323	H	7190		000000	00	371	220,000	DD.	1		-	_	
							,	,				_	10		_	_	
												ļ			_	_	
												1		1			at desire

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 PAG858 458 9044 Fax 858 458 0943

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE 919 ALA MOANA BLVD. ROOM 206 HONOLULU, HI 96814 INVOICE NO.: 012114 INVOICE DATE: 02/15/00 CONTRACT NO.: ASO LOG # 98 PROJECT NO.: 3-1962-0005

PROJECT TITLE: DOH KAKAAKO BROWNFIELD UNIT 8

ATTN: STAN DEUZ ASO LOG #98-418

FOR SERVICES PERFORMED THROUGH 01/28/00.

CURRENT PROJECT CHARGES STATE OF HAWAII EXCISE TAX	(PRIME)	\$	14,755.00 571.87
TOTAL DUE THIS INVOICE		\$	15,326.87
		====	

CONTRACT STATUS:

TOTAL CONTRACT AMOUNT\$	99,966.00
TOTAL INVOICED THRU 01/28/00\$	15,326.87
CONTRACT AMOUNT REMAINING\$	84,639.13

1.5% INTEREST DUE ON BALANCES OVER 30 DAYS

Payment Approved:
Goods/Svs. Satisfactorily Received:
By:
Date Goods/Svs. Rec'd /- 2 8 - UD
Date Invoice Rec'd. 2 - 2 8 - UD

Remittance Address:
Ogden EESC
PO Box 84027

OGDEN ENVIRONMENTAL AND ENERGY SERVICES

5510 Morehouse Drive San Diego, CA 92121 858 458 9044 PACE \$ 858 458 0943

INVOICE NO. : 012114

INVOICE DATE: 02/15/00

CONTRACT NO.: ASO LOG # 98

PROJECT NO. : 3-1962-0005

HAWAII DEPARTMENT OF HEALTH ATTN ACCOUNTS PAYABLE

BALARY AND EXPENSE

'ROJECT DOCUMENTS INSIDE HAWAII

'ROFESSIONAL SERVICES			•			
		Hours	RATE			Amount
WORD PROCESSING				•	•	· · · · · · · · · · · · · · · · · · ·
MONTGOMERY, WILLIAM	01/28/00	18.00			•	
•	***	18.00	45.00			810.00
CADD / DRAFTING		,		٠		
NAKAAHIKI, UILANI B	01/28/00	5.00	• •			
•	***	5.00	50.00			250.00
TOMA, STEFFANY M	01/21/00	14.00		-		250.00
TOMA, STEFFANY M	01/28/00	30.00			•	
TOMA, STEFFANY M	01/28/00	3.00	-	*		•
•	***	47.00	50.00			2,350.00
KOTOSHIRODO, JAN H	01/14/00	14.50		•		_/
KOTOSHIRODO, JAN H	01/21/00	11.00		•		
KOTOSHIRODO, JAN H	01/28/00	26.50		•	•	
	***	52.00	50.00		•	2,600.00
DOMINGO, CHERILYN M	01/14/00	24.00			•	•
DOMINGO, CHERILYN M	01/21/00	4.00			•	
DOMINGO, CHERILYN M	01/28/00	19.00			·	
	***	47.00	50.00		•.	2,350.00
RUBIN, DAVID N	01/28/00	16.00	•	••		
•	***	16.00	50.00			800.00
JEOLOGIST				•		
KAMAKA, MICHAEL H	01/14/00	6.00		á		
KAMAKA, MICHAEL H	01/28/00	28.50				
idanta, Michael I	***		70.00			0 455 05
		34.50	70.00		· ·	2,415.00

COPY

Per Micolette - mill follo up spain inth San Diejo office - I said office in Winest cough of days they I have Its send her Invoice.

P. O. BOX 3378 HONOLULU, HAWAII 96801

STATE OF HAWAII DEPARTMENT OF HEALTH

HAZARD EVALUATION AND EMERGENCY RESPONSE OFFICE

	*
TO: Ogden Environmental	NO. OF PAGES:
TO: Ogden Environmental (ath: Mcokette
COMPANY: Osden Environmen	
TELEPHONE:	- 0 270
FROM: Clyde Morita - VI TELEPHONE: (808) 586-4249 F	EAX: (808) 586-7537
COMMENTS:	
attached is the 3rd Invoice which	ih I have a copy of.
attached is the 3rd Invoice which The previous invoices were In	voice * 0/2/14 (2/15/00)
and # 012255 (3/14/00).	after payment of the
and # 012255 (3/14/00). a Hached Involce, my records versus \$71,305.26 shown on b	show balance of \$72,21285

OGDEN ENVIRONMENTAL AND ENERGY SERVICES, INC. TASK ORDER AUTHORIZATION

NON-EMERGENCY ENVIRONMENTAL RESPONSE CONTRACT ASO LOG NO: 98-418

Case Number:	Date	e: December 23, 1999
Site Name: Kakaako Brownfield – Unit 8		
Address:		
PROVIDE A QUOTATION for the following good	ods and/or services:	
Perform site investigation and risk evaluation in a DOH scope of work dated October 18, 1999.	accordance with EPA guidelines for I	Brownfields studies and
QUOTATION REQUESTED BY: December 10	0, 1999 to the following:	
Control Description	DI GAVAL 500	1051/50/ 7527
Contact Person: Charlie Langer	Phone/FAX No: 586	1-4251/580-7537
CONTRACTOR TO C	COMPLETE THE SECTION BELOV	W
Please submit a work plan, including costs, requir		
Ogden will provide full services for the implement		uation and reporting in
accordance with the attached proposal, revised De	ecember 23, 1999.	
Costs are estimated to be \$99,966.00 per the cost	estimate included in the attached pro	aposal Actual costs will be
invoiced per the rates contained in Ogden's contra		
m voiced per the rates contained in egach s contained	act with the Berry net to exceed the	· · · · · · · · · · · · · · · · · · ·
	Post-it [™] Fax Note 7671	Date 1/27 # of pages 10
	To A. P. J. Y	From CA A
	Co./Dept.	Co. Charley fangle
		V
	Phone #	Phone # 586-4249
	Fax# 7-2504	Fax #
SIGNATUR	RES IN AGREEMENT	
STATE:	CONTRACTOR:	~ 0.1
Pur Leut Karne K	p stan -X	11/1/2
Print Name: Keith E. Kawaoka, D.Env.	By: Daylow O.	value Hazalyward
Title: Manager	Print Name: for Dou	iger, Honolulu Office .
Date: January 3, 2000	Date: December 23,	
Date.	Date. December 23,	

PROPOSAL TO PERFORM A SITE CHARACTERIZATION STUDY FOR THE KAKA'AKO BROWNFIELD UNIT 8 SITE, HONOLULU, OAHU, HAWAII

BACKGROUND

The Department of Health (DOH) plans to conduct a site characterization study at the Kaka'ako Brownfield Unit 8 Site. The 2-acre project site is the former GRG Enterprises site at 115 Ahui Street, Honolulu, Hawaii. The Hawaii Community Development Authority (HCDA) is the property owner and the State of Hawaii, Department of Transportation-Harbors Division manages the site. Current site use includes a variety of fish brokering, processing, and suppliers as well as marine fueling facility.

The site has been the subject of previous environmental reports that include the following:

Phase I Environmental Site Assessment, Kaka'ako Brownfield Project, Edward K. Noda & Associates and Cotton Consulting, for HCDA, October 1997

Phase II Field Investigation, Kaka'ako Brownfield Project, Edward K. Noda & Associates and Cotton Consulting, for HCDA, July 1999

Underground Storage Tank Closure, Former GRG Enterprises Site, WMF Hawaii for Neil Nakai, Inc., November 23, 1998

Phase II Environmental Site Characterization, Former GRG Enterprises Site, WMF Hawaii for Neil Nakai, Inc., July 26, 1999

Information from the above reports indicate that the site may be impacted as follows:

- Borings indicate that incinerator ash may have been used as fill
- Ash samples contain elevated lead and cadmium concentrations
- Structures containing lead-based paint and asbestos materials
- Former hydraulic lift area may have been site of oil release that may contain PCBs
- 4 former underground storage tank (USTs) sites (now removed) that included two 1000-gallon gasoline and two 6000 gallon diesel USTs clustered in an area near the bay
- Impacted groundwater beneath UST area with total petroleum hydrocarbon (TPH) as diesel above tier 1 DOH levels

· General stained areas around the project site

In addition to the above referenced reports, additional background information indicates that an incinerator may have existed at the site. Consequently, the DOH has requested that a site characterization study be conducted at the site to assess the extent and nature of the impacted soils, groundwater, and lead-based paint and asbestos materials contained in the existing structures and the corresponding risk to human health and the environment. The study methods and strategies should focus strongly on site remediation and closure.

This proposal has been prepared by Ogden Environmental and Energy Services Company, Inc. (Ogden) to support the DOH in planning and performing a site characterization study at the Kaka'ako Brownfield Unit 8 Site. Ogden and the DOH executed an Agreement for Professional Services on July 1, 1998 (ASO Log No. 98-418), under which this work is to be performed.

2. OGDEN SCOPE OF WORK

Ogden has developed this proposed Scope of Work (SOW) to support the DOH in fulfilling its responsibilities for a site characterization study at the Kaka'ako Brownfield Unit 8 Site. This SOW describes the work to be completed by Ogden in five separate tasks:

- Task 1 Project Planning
- Task 2 Planning Documents
- Task 3 Field Investigation
- Task 4 Data Evaluation and Analysis
- Task 5 Risk Evaluation
- Task 6 Reporting

Each task description includes a statement of the task's goals as well as significant challenges anticipated. Assumptions that affect costing also are identified.

Task 1 - Project Planning

This initial task will include identification of project participants, coordination of labor effort, procurement and management of subcontracts such as utility clearance, and drilling. The project manager will coordinate lines of communication with the DOH and other agencies. For costing purposes it is assumed there will be one initial project startup meeting with the DOH, and one internal meeting with all the project participants to discuss project objectives, strategies, logistics, and work schedule. It is also assumed that a total of five progress meetings with DOH and other appropriate agencies that includes the project manager and a key staff member will be held throughout the project.

Task 2 – Planning Documents

Ogden will prepare a detailed Sampling Analysis Plan (SAP) incorporating elements of a Work Plan (WP), Field Sampling Plan (FSP), and Quality Assurance Project Plan (QAPP). A site specific Health and Safety Plan will also be prepared.

The SAP will contain information typically included in a WP, (including, but not limited to, background information about the project area and a summary of previous investigations) and discussions of each task in the SOW. It will explain the methodology and rationale used to perform each task, including the identification of sampling methods, COPCs, and sampling locations.

The FSP component of the SAP will identify the types and locations of samples to be collected, the analyses to be performed, and the procedures to be followed in collecting and analyzing samples. The FSP will also specify background sampling locations and samples collected to fulfill quality assurance/quality control (QA/QC) objectives. An essential part of the FSP will be the development of Data Quality Objectives (DQOs) in accordance with EPA region IX guidance. The guidance involves a seven step process that includes the following: 1) state the problem, 2) identify the decision, 3) identify the inputs to the decision, 4) define the boundaries of the study, 5) develop a decision rule, 6) specify limits on decision errors, and 7) optimize the design.

The QAPP component of the SAP will identify the factors that may affect the quality of the study results, together with measures that will be employed by Ogden to control quality. Other components will include, but are not limited to, a list of target analytes, associated detection limits, and QA/QC criteria.

The Draft SAP will be prepared and submitted to DOH and EPA for review and comment. Comments will be addressed and a Final SAP will be delivered addressing those comments. It is assumed that five copies each of the Draft and Final SAP will be delivered.

In developing the SAP, Ogden will evaluate and select sampling strategies best suited to meeting the DQOs for the project. Special consideration will be given to meeting the needs of the risk assessment and the presumptive remedial alternatives. These considerations will be evaluated, in cooperation with DOH, with the goal of adopting a SAP that is acceptable to all involved parties and incorporates sound scientific QC principles.

Ogden will prepare a Health and Safety Plan (HSP) for use by its staff in conducting field portions of the work. The HSP will identify those measures that will be used by Ogden personnel to ensure safe working conditions throughout the field operations. A copy of the HSP will be provided to DOH prior to the start of field activities.

Ogden will be responsible for coordinating necessary access to sampling locations with the site tenant. The State of Hawaii Department of Transportation, Harbors Division will ensure access is granted to Ogden in a timely manner.

Task 3 - Field Investigation

The field investigation task will consist of the following subtasks:

Subtask 3A- Utility/Borehole Clearance

Subtask 3B- Surface Soil Sampling

Subtask 3C- Subsurface soil Sampling

Subtask 3D- Monitoring well Installation

Subtask 3E- Groundwater Sampling

Ogden will arrange contractors for the drilling, well installation, and utility clearance. The EPA CLP and Region IX laboratories will be contacted in advance of sampling activities to arrange for analysis of collected soil and groundwater samples and ensure that the laboratory is able to meet the established QA/QC criteria presented in the QAPP. The following is a description of each of the field subtasks.

Subtask 3A- Utility/Borehole Clearance

A utility location survey will be conducted prior to the commencement of field activities. The purpose of the survey will be to delineate to the extent practicable the location of subsurface utilities and other features that may present a hazard to drilling and other field activities. Ogden will contract with an experienced underground utility location service that will clear areas that have been marked in advance for subsurface field activities using a variety of geophysical methods. A search for any maps that show the locations of utilities will be conducted to supplement the survey.

Subtask 3B- Surface Soil Sampling

Surface soil samples will be collected at the site to assess surfacial contamination around areas of concern including the hoist area, observed stained soil areas, or around former transformer pads. Samples may be collected within the 0 to 3-foot range using a hand trowel, hand-held spoon sampler with a stainless steel sleeve, or other device depending on the location and type of analysis. Some concrete coring may be required to sample in selected locations (underneath cracks or joints). Actual locations and number of surface soil samples will be selected during development of the SAP and will be located on a pre-surveyed grid or by tape and compass. The surface soil samples plus QA/QC samples and trip blanks (VOA only) will be collected and analyzed using contract laboratory program (CLP) methods for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), CLP metals, and CLP PCB/pesticides. Fifty percent of the samples will be analyzed for total Petroleum hydrocarbons (TPH) by method 8015, and 25% of the samples will be run for the toxic characteristic leaching procedure (TCLP) for CLP metals, CLP SVOCs, and CLP

PCB/pesticides to help facilitate ultimate remediation and disposal. For costing purposes, Ogden estimates that sampling will require two full-time personnel for a period of 3 days in the field.

Subtask 3C- Subsurface soil Sampling

Ogden proposes to conduct a subsurface soil investigation to assess the vertical and lateral extent of soil contamination at the site, particularly the burn ash layer noted in the previous Phase I and II reports by Edward K. Noda and Associates (October 1997 and July 1999). It is proposed that direct push borings be advanced to the water table (approximately 6 to 8 feet below grade) to assess the extent of the burn ash layer. The borings will be advanced to assess the presence or absence of the ash layer by observation and careful logging of the soil properties using the Unified Soil Classification (USC) and other field screening methods such as PID readings. Selected environmental samples will be collected between the ground surface and water table from a pre-selected number of the borings to document the nature of the contamination. The locations of the borings including those chosen for environmental sampling will be selected during the development of the SAP and surveyed upon completion by a licensed surveyor.

Soil samples, QA/QC samples, and trip blanks (VOA only) will be collected and analyzed using contract laboratory program (CLP) methods for VOCs, SVOCs, metals, and PCB/pesticides. Several samples located within the burn ash units will be analyzed for dioxin using method 8290. A small number of samples (approximately 10%) will be analyzed for total Petroleum hydrocarbons (TPH) by method 8015, and 25% of the samples will be run for the toxic characteristic leaching procedure (TCLP) for CLP metals, CLP SVOCs, and CLP PCB/pesticides to help facilitate ultimate remediation and disposal. Ogden estimates that sampling will require two full-time personnel for a period of 3 days in the field.

Subtask 3D- Monitoring well Installation

Ogden proposes to convert 3 of the borings into groundwater monitoring wells. Each well will be screened across the water table with 2-inch schedule 40 PVC. Use of the 2-inch PVC will be the most cost effective since they are easier to install, require less materials cost, require less time to sample, and water volume to purge for sampling. The purpose of the wells will be to assess water quality, and provide a site-wide groundwater gradient map when used in conjunction with the existing site wells. Details of screen size, filter pack, annular seal, surface completion, and well development will be described in the SAP and will be in conformance with state and EPA region IX guidelines. Each well will be survey within 0.01 inch by a licensed surveyor at a designated mark at the top of the PVC casing to serve as a reference for water level measurements. The monitoring wells will be installed concurrently with the soil borings and will not require additional field time.

Subtask 3E- Groundwater Sampling

Ogden proposes to sample the 3 newly installed and 5 existing monitoring wells after at least 24 hours have passed since well installation and development. The purpose of the groundwater sampling will be to assess the site-wide water quality and support the screening risk assessments. It is assumed 8 groundwater samples plus 2 QA/QC samples and 2 trip blanks (VOC only) will be collected and analyzed using EPA CLP methods for VOCs, SVOCs, metals, and PCB/pesticides. Three wells located in close proximity to the bay will be selected to be analyzed for low ecological risk-based detection limits. All eight monitoring wells will be analyzed for TPH (8015), and 2 samples will be run for dioxin (8290). Ogden estimates that sampling will require two full-time personnel a period of 3 days in the field.

Ogden will collect, label, preserve, and ship groundwater and soil samples to the designated laboratory for analysis. It is assumed that approximately 50 samples will be collected and shipped for analysis, including equipment rinsate, trip blank, field blank, and duplicate samples.

It is assumed that disposable sampling equipment will be used when possible, allowing all Investigation-Derived Waste (IDW) to be bagged and disposed of as municipal solid waste, without confirmatory sampling. All other equipment will be decontaminated. Decontamination water and groundwater purge water will be held onsite in DOT approved drums (one drum per well for purge and one drum for decontamination) pending analysis. It is assumed for costing purposes that the decontamination and purge water will prove to be non-hazardous and can be disposed into the storm drain with proper approval.

Task 4 - Data Evaluation and Analysis

Ogden will begin evaluating and collating data as soon as Task 3 is completed. Analytical chemical data compilation under this task will begin when preliminary laboratory results are received. Hydrogeologic data will be evaluated for tidal analysis and groundwater flow. Evaluation of the hydrogeological and chemical data will include 1) setup up the initial database, 2) assessing the nature and extent of any contamination, 3) evaluation fate and transport properties, and 4) compiling and graphic presentations (contour maps, conceptual models) and tables.

Data will be validated using the EPA Region IX option 2 protocol at Ogden's Denver-based data validation group. Specific compounds that exceed set action levels or are presumed risk drivers will be targeted for more rigorous validation. It is assumed this more rigorous validation will be required in approximately 5% of the data.

Task 5 - Risk Evaluation

Ogden proposes to conduct a preliminary screening risk assessment (SRE) for both human health and ecological risk. The SRE methodology used to assess potential health risks will be developed following the EPA (1991) Risk Assessment Guidance for Superfund: Volume I – Human Health Evaluation Manual (Part B) guidance for application of Preliminary Remediation Goals (PRGs) in deriving screening-level risk estimates.

A screening ecological risk assessment (SERA) will identify potential receptors of concern in the marine environment adjacent to the site. The ecological risk to marine receptors will be evaluated by comparing groundwater chemical concentrations to federal and state ambient water quality criteria (AWQC) for chronic effects to saltwater species multiplied by 10. The AWQC will be multiplied by 10 to account for some dilution upon discharge of groundwater to surface water per guidance in the National Oceanic and Atmospheric Administration (NOAA) Screening, Quick Reference Tables, NOAA HAZMAT Report 97-2, Seattle WA, Hazardous Response and Assessment Division by M.F. Buchman 1998.

Task 6 - Reporting

Ogden will prepare and deliver to DOH a Draft Site Characterization Report describing the methods and results of the field investigation. A Final Report will be prepared addressing any comments provided by DOH or other agencies on the draft submittal. Written responses to DOH or other agency comments to the Draft Report will be provided with the final submittal. It is estimated that five copies of the Draft Report and ten copies of the Final Report will be provided by Ogden.

The reporting document will include brief descriptions of the methodologies employed. The SAP and QAPP will be referenced in the report and included as appendices. Any deviations from the planned procedures will be explained in the report.

The report will include an Executive Summary that is written to allow ready interpretation by the general public. Appendices to the report will include, but are not limited to, photograph documentation, field sampling logs, well construction logs, boring logs, field notes, and chain-of-custody forms.

The report will present the results of the sampling efforts in both tabular and graphical formats. Results will be compared to established threshold criteria selected for use in this project (e.g., the Environmental Protection Agency's Preliminary Remediation Goals [PRGs]).

Ogden will identify those locations (if any) where threshold values for human health or environmental protection are exceeded. The report will recommend further actions and remedial strategies as appropriate.

The report will be submitted with a tabulated data table of all sampling results in electronic data disk format. A list of all sample point coordinates capable of incorporation into Geographic Information System (GIS) format will also be included.

3.0 SCHEDULE

The expected duration of this project as presented herein is 215 days from the acceptance of this proposal. This duration is based on a 10 day document review time from DOH and other agencies, and a 30 laboratory turn-around time for analytical data from the EPA Region 9 and CLP laboratories. The following is a summary in calendar days form the notice to proceed for each task.

Task 1 - Project Planning

0 -10 days after notice to proceed (NTP)

Task 2 - Planning Documents
Draft SAP, FSP, QAPP, and HSP
Final SAP, FSP, QAPP, and HSP

Due 30 days after NTP

Due 15 days after receipt of comments

Task 3 - Field Investigation

Begin 5 days after submittal of Final Planning Documents: expected duration 20 days

Task 4- Data Evaluation and Analysis

Begin 3 days following receipt of data from the EPA region IX and CLP laboratories: The task will be completed 30 days after the receipt of all data from the EPA region IX and CLP laboratories (includes 30 days data validation)

Task 5 – Risk Evaluation

Task Paye Cum.

4 (30 labora)

5 30 days

6 Droft SIR days

173

DMarch 22 2001

Assume done Taske 3.

Completed 60 days following the receipt of all data from the EPA region IX and CLP laboratories (30 days following receipt of validated data)

Task 6 – Reporting

Draft Site Characterization Report

Submitted 80 days following the receipt of all data from the EPA region IX and CLP laboratories

Fina Draft Site Characterization Report

Submitted 15 days after receipt of comments

4.0 STAFFING

The following key Ogden staff are proposed for this study:

Program Manager: Doug Hazelwood Project Manager: Eric Wetzstein Field Manager: Mike Kamaka Field QA/QC: Steffany Toma Geologist: Cherilyn Domingo Health & Safety Manager: Cathi Seto

Additional Ogden and subcontractor staff will be used on the project as required.

5.0 COST ESTIMATE

Table 1 provides a detailed breakdown of the estimated cost for performing the study. It is assumed that a 2-person field crew will be required for 10 days in the field for drilling, sampling, and all other field activities. It is also assumed that the direct push drilling crew will be required for 3 days including monitoring well installation. It is assumed that all required laboratory analyses will be performed at the EPA Region IX and CLP laboratories at no cost to Ogden.

Cost Estimate for a Site Characterization Study at the Kakaaka Brownfield Site, Unit 8

LABOR

				1 1								· .					_		_
1				Tas	b 1	Tasi	k 2	Tas	k 3		Task	4	Task	5		k 6		tal	
	-		Doto	Hours	Cost	Hours	Cost	Hours	С	ost -	Hours	Cost	Hours	Cost	Hours	Cost	Hours		ost
Role	PL		Rate	10				0	\$	-	0	\$	0	\$ -	2	\$ 313	12	•	1,875
Program Manager	18	13	156.25					8	_	967	10	1,208	2	\$ 242	20	\$ 2,417	85	\$ 1	10,271
Project Manager	14	\$	120.84	20				0		- 30,	ol :		40	3,542	> 20	\$ 1,771	64	\$	5,667
Staff Toxicologist	11	\$	88.54	. 4		0			_	 +	3	•	3		20		66	\$	7,562
Hydrogeologist	14	\$	114.58	10					•		0		- 0		10		23	\$	2,036
Ecologist	11_	\$	88.54	3					\$			·	- ŏ		60		230	\$ 1	16,772
Field Manager	8	\$	72.92	10				100		7,292	0		0		20		123		7,688
QA/QC Field Scienist	6	\$	62.50	3				90		5,625	0		0			\$.	23		2,036
Health & Safety Manager	11_	\$	88.54	3				0		4 500	15		0		20		78		4,062
Geologist	4	\$	52.08	3				30		1,562	20		10		10		41		3,630
Data/Lab Manager	11	\$	88.54		\$ 89				\$		0		- 0			\$ 1,000	40	_	2,000
CADD/Drafting	1 -	\$	50.00	0		20			\$		0		i d		20				1,800
Word Processing	o	\$	45.00	0	\$ -	20			4		10	•	Ö			\$ -	10		885
Senior Data Validator	11	\$	88.54	-0		0			\$	-	11	, , , , , ,				\$ -	11		802
Data Validator 1	8	\$	72.92		\$ -	0			\$			\$ 4,375				\$ -	70		4,375
Data Validator 2	6	\$	62.50	0		0			s	•		\$ 4,3/3 \$ 7,291				\$ -	140		7,291
Data Validator 3	4	\$	52.08	0		0			\$							\$ -	6	_	CO
Data technican	2	\$	50.00	0		0			\$	•	6		- of			\$ -	13		813
Contract Administrator	6	\$	62.50	10					\$	- 446		\$ 18,487	55			\$ 17,129		_	79,866
Totals				77	\$ 7,797	198	\$ 15,994	228	3	15,446	295	φ (0,40 <i>/</i>	331	Ψ 3,012		·	, ,,,,,		

OTHER DIRECT COSTS

				To			Tas	ı, E	,	Tas	k 3		Tasl	4		Tas	k 5		Tas	k 6			otal	
	Unit	i Lili	nit Cost	Tas Quantity		Cost	Quantity	II.Y	Cost	Quantity		Cost	Quantity		Cost -	Quantity		ost	Quantity	14	ost	Quantity		Cost
Description Local Mileage	mile	Š	0.31	300	_	93	0	\$	•	60	_	19	0	_		0		<u> </u>		\$		360 400		112
Telephone/Fax	min	Š	0.25	300	\$	75	25	\$	6	75	_	19	0	_		0				\$			\$	6,927
Direct Push Driller	day	\$	2,309	0	\$		0			3		6,927	0		•	0	-			\$		1	ř	531
Well Installation Materials	ea	\$	531	. 0	\$	•		\$		1		531	0	_		0		<u> </u>		\$	-	8	\$	1,200
Surveyor	hr	\$	150		\$			ş		8		1,200 960	ö	_		0				\$			Š	960
Utility Location	hr	\$	120.00		\$	-		\$		8		500	0			0				\$	-	10	\$	500
Drums	ea.	\$	50.00		\$	•		\$		10		30	0	_		ő	_			\$		12	\$	60
Parking, Tolls & Gas	day	\$	5.00		\$	30		\$		6	_	30	10	_		ő			2000		160	4,160		333
Reproduction (B&W)	page	\$	0.08	100		8	2000			50 0			0	_		- 0			40		34	90		77
Reproduction (color)	page	\$	0.85		\$	-	50			0	_		- ö	_		2		10		\$	25	10	\$	50
Express Mail	pkg	\$	5.00		\$	15		\$		10	_	1,500	8			0				\$		10	\$	1,500
PPE - Level D	p/wk	\$			\$			69		8		1,000	ő	_		0		-		\$	-	8	\$	1,000
Sample Shipping to Lab	cooler	\$	125.00		\$			\$		10		120	6		-	- 0			0	\$	-	10	\$	120
Bailers	ea	1\$	12.00		\$			_			\$	936	3			0		- -		\$	-	1	\$	900
Concrete Coring	day	\$	936.00		\$	-		S K		4	_	160	- 8	•		O			0	\$	-	4	\$	160
Generator	day	\$	40.00		\$	•		\$		9	•	540	- 8				\$	•	0	\$		9	\$	540
Sampling Equipment	day	\$	60.00		\$			\$			_	300	- 8				Š			\$	•		1 \$	300
Field Vehicle	day	\$	30.00		\$			\$		10	\$	675	0				\$			\$		9	1 \$	675
PID	day	\$	75.00	0	\$		0	\$				15,420		\$	1		\$	10		Š	219		\$	16,080
Subtotal ODCs			<u>. </u>		\$	221		\$			\$	3.084		\$.		\$	- 2		\$			\$	
G&A Cost			20%	4	\$	44		\$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	771		\$	0		Š			Š	11		\$	
HI Excise Tax	The Marie		4.17%	Section 2	\$	11	the foreign to the fifth	\$		No. of the second second	\$			\$	- 1		\$	13		\$	274	the many particular		20,100
Total ODCs					\$	276		\$	261	1 6 1 3 3 3 3 5	3	19,275		*		STVD Contract	_		residence in	Ľ.			Ť	

COST SUMMARY

Cost Category	1 1 T	ask 1	Task 2	Task 3	Task 4	Task 5	Task 6	Total
Labor	\$	7,797	\$ 15,994	\$ 15,446	\$ 18,487	\$ 5,012	\$ 17,129	\$ 79,866
Other Direct Costs	- \$	276		\$ 19,275		\$ 13		\$ 20,100
Total Project Cost	\$	8,073	\$ 16,255	\$ 34,722	\$ 18,488	\$ 5,025	\$ 17,403	\$ 99,966

		WORK TASK	
Task 1	Project Planning	Task 4	Data Evaluation & Analysis
Task 2	Project Documents	Task 5	Risk Evaluation
Task 3	Field Investigation	Task 6	Reporting

From:

"Clyde Morita - HEER" < EHANVL1/CMORITA>

Organization:

Environmental Health Administration

To:

"Bryce Hataoka - HEER" < EHANVL1/BHATAOKA>

Date sent:

Tue, 19 Oct 1999 15:34:32 GMT-10

Subject:

DOT Kakaako BF project

Copies to:

"Charley Langer - HEER" < EHANVL1/CLANGER>

Bryce and Charley,

To keep you updated on the project, the Scope of Work letter and the four documents were picked up yesterday by Ogden Env. (Mike Kamaka).

Doug Hazelwood is out-of-country this week and should be back on Mon, Oct. 25. Eric Wetzstein, who's in the process of moving to Hawaii to head up the Environmental Group, is back in San Diego for a couple of weeks. Mike Kamaka will forward the materials to Eric so he can start his review.

I've talked to Arnold Liu, DOT, a couple of times so he's aware of where we are.

Clyde.

From:

"Wetzstein, Eric, E." < eewetzstein@oees.com>

To:

'Charley Langer - HEER' < clanger@eha.health.state.hi.us > "Kamaka, Michael, H." < MHKamaka@oees.com > , "Hazelwood,

Copies to:

<dihazelwood@oees.com>

Subject:

EPA Region 9 Sampling Plans

Date sent:

Mon, 18 Oct 1999 13:18:23 -0700

Charley,

Could you please forward the background materials and scope of work for the brownfield project to Mike Kamaka at the Honolulu office rather than to Doug as we had discussed. Doug may be out of town and Mike can forward them to me. I will be in San Diego for a few weeks and can be reached at 619-458-9111 ext. 339 or by email.

Thanks Eric

Note to the Kakaako Brownfields Unit 8 Site File

June 26, 2000

Characterization of lead-based paint and asbestos at the Unit 8 structures was eliminated from Ogden's scope of work because these constituents can not be addressed using Brownfields program funds. Ogden's proposal, the official signed contractual document, does not include characterization of lead-based paint and asbestos at the site.

Dawn Cosgrove Voluntary Cleanup Program Specialist Formed to EPA

Example laborator of Vint 8

SOW for Analytical Services at Akasaki Fuel Terminal Revision: and the Hakozaki Fuel Farm AST Foundation

Date: November, 1998

STATEMENT OF WORK FOR ANALYTICAL SERVICES

TA	BLE OF CONTENTS	
1.0	GENERAL INFORMATION	3
	1.1 Project Background	3
	1.2 General Description of Work Requirements Error! Bookmark n	ot defined.
	1.3 Anticipated Period of Work	3
2.0	SITE BACKGROUND	4
3.0	TECHNICAL SPECIFICATIONS	5
	3.1 Permitting	6
	3.2 Required Meetings	6
	3.3 Analytical Program	5
	3.3.1 Description of Analytical Program	6
	3.3.2 Technical Requirements	6
	3.3.3 Deliverables	6
	3.3.3.1 Turnaround Time	6
	3.3.3.2 Delivery Format	7
	3.3.3.3 Electronic Deliverables	7
	3.3.3.4 Additional Reporting Requirements	8
4.0	RECORDKEEPING AND REPORTING	8
5.0	LIOUIDATED DAMAGES	8

Revision:

0

Date: May 1996

Page 2 of 9

6.0 INVOICING 9

ENCLOSURE 1: Summary of Sample Numbers, Analytical Methods, and Matrices

ENCLOSURE 2: Required Supplies, Sample Storage, and Sample Disposal

ENCLOSURE 3A, 3B: Price Schedule

ENCLOSURE 4: Control Library

ENCLOSURE 5: Requested Sample Quantity

ENCLOSURE 6: Deliverables and Addresses

ENCLOSURE 7: Ogden Electronic Data Deliverable Format, "OG794"

Revision:

0

Date: May 1996

Page 3 of 9

STATEMENT OF WORK FOR ANALYTICAL SERVICES Kaka'aka Brownfield Unit 8, Honolulu, HI

1.0 GENERAL INFORMATION

This statement of work (SOW) details requirements for a Subcontractor performing analytical services at the Kaka'aka Brownfield Unit 8 site, Honolulu, HI. This SOW includes a brief description of the site history and background, presents the technical approach for the analytical sampling program, and outlines the reporting procedures and data evaluation requirements for this project.

1.1 Project Background

The Department of Health (DOH) is planning to conduct a site characterization study at the Kaka'aka Brownfield Unit 8 Site. The 2-acre project site is the former GRG Enterprises site at 115 Ahui Street, Honolulu, Hawaii. The Hawaii Community Development Authority (HCDA) is the property owner and the State of Hawaii, Department of Transportation-Harbors Division manages the site. Current site use includes a variety of fish brokering, processing, and suppliers as well as marine fueling facility.

The purpose of the site characterization study is to evaluate if chemical impacts are present at the Kaka'aka site and if present, whether they pose an imminent and substantial threat to human health and safety. The specific objectives of the project are to: 1) assess the nature of any chemical impacts at the site; 2) evaluate the potential threats to human health due to any significant chemical impacts identified; 3) provide recommendations for any necessary remedial actions.

1.3 Anticipated Period of Work

SOW for Analytical Services at NAS Agana Revision:

Date: May 1996 Page 4 of 9

Field activities are scheduled to begin March 6, 2000 and take approximately 25 days. The first shipment of samples is anticipated to arrive at the laboratory approximately two days after commencement of field work.

The exact dates for fieldwork are subject to change.

Revision:

Date: May 1996

Page 5 of 9

2.0 SITE BACKGROUND

The types of hazardous constituents associated with materials identified at the site would require analysis for VOCs, SVOCs, Pesticides/PCBs, heavy metals and dioxins. Existing structures would require confirmation analysis for asbestos and lead based paint. For purposes of potential remediation and disposal, RCRA criteria for hazardous waste determination using Toxic Characteristic Leaching Procedure (TCLP) may be performed on select samples or sample composites. Soil test results will be screened at 20 x TCLP regulatory criteria for TCLP extracts. If concentration(s) of any contaminate(s) in the select site characterization samples exceed the 20x's criteria, these sample will be considered potentially hazardous and will be require subsequent testing using TCLP (EPA Method 1311) for the identified contaminates of concern. These analyses are included in the analytical program.

Revision:

0

Date: May 1996

Page 6 of 9

3.0 TECHNICAL SPECIFICATIONS

Deliverables for all analytical services for the project will be EPA Level III. The quantity and matrix of each parameter is outlined in Enclosure 1. CLP deliverables will be validated using EPA Level III data validation criteria.

3.1 Permitting

The analytical laboratory must be Hawaii State certified.

The analytical laboratory must obtain a USDA soil permit to receive soil samples from Hawaii.

3.2 Required Meetings

A pre-work teleconference will be conducted prior to sample collection. The project coordinator at the Ogden Honolulu Office will initiate the call.

3.3 Analytical Program

The analytical sampling program will consist of the collection and analysis of both soil and groundwater samples. The analytical sampling program has been divided into two different phases of work, including the soil sampling phase and the ground-water monitoring phase. Both sampling phases will be conducted during one field mobilization event.

Soil and ground water samples will be collected and analyzed by the methods listed in Enclosure 1. Data will be reported in both electronic and hardcopy formats.

3.3.1 Description of Analytical Program

Revision:

0

Date: May 1996

Page 7 of 9

The required supplies, sample storage and sample disposal are listed in Enclosure 2.

3.3.2 Technical Specifications

All analytes and surrogates identified on Enclosure 4 will be analyzed in accordance with the procedures and methods described in the following documents:

U.S. EPA Contract Laboratory Program (CLP) Statement of Work for Organics Analysis Multi-Media, Multi-Concentration Document number OLM03.2 (August 1991).

U.S. EPA Contract Laboratory Program (CLP) Statement of Work for Inorganics Analysis Multi-Media, Multi-Concentration Document number ILM04.1.

Test Methods for Evaluating Solid Waste, EPA SW-846

The required sample matrices, and number of samples per sampling round are listed in Enclosure 1. The requested sample quantity information (for the seller to determine) is included on Enclosure 5.

Concentrations for all analytes in soil/sediment will be reported on a dryweight basis. Concentrations for all analytes in water/ground-water samples will be reported on a "per liter volume" basis.

3.3.3 Deliverables

3.3.3.1 Turnaround Time (TAT)

The laboratory(ies) will report data in as follows:

35-day TAT for hardcopy forms and EDDs. Data may be electronically transferred in order to comply with delivery schedules.

Revision:

0

Date: May 1996

Page 8 of 9

3.3.3.2 Delivery Format

All CLP and non-CLP data analyses shall be reported on CLP or CLP-like Forms and provided in "Agency Standard" Data Packages and Sample Results Packages (SRPs).

3.3.3.3 Electronic Deliverables (EDDs)

All non-CLP data will be reported electronically using Ogden Format "OG794" unless otherwise specified and upon prior approval from Ogden. All file names must be compliant with those specified in the "OG794" document.

All Contract Laboratory Program data for OLM03.2 and ILM04.1 (or most current CLP methodology) will be reported electronically in "Agency Standard" format found in Exhibit H of the CLP Statement of Work. The names, CAS numbers, and units must be used in reporting, exactly as specified for the method specified analyte list.

The content of the EDD shall exactly match the data contained in the Forms of the hard copy deliverables. This shall include all data relating to tentatively identified compounds (TICs), all Aroclors and toxaphene, and all metals results that appear on the Form 1s. Any discrepancies between the hard copy and electronic data deliverables must be specifically stated in the case narrative of the agency standard data packages after receiving prior written approval by Ogden project manager.

3.3.3.4 Additional Reporting Requirements

For all analyses, deliverables for each SDG, including agency standard DPs, SRPs (copy of Form Is or equivalent), and EDDs shall be submitted within 35 days of receipt of the last sample of that SDG. All re-prep, dilutions and reanalyses will be reported in the same SDG as the original sample. All resubmitted data will be accompanied with a memo listing the changes or updates. When data is sent via modem a fax will be sent identifying the files and size of each file. When Ogden submits "COC change form (s)"

SOW for Analytical Services at NAS Agana Revision: 0

Page 9 of 9

the lab must re-issue the check-in paperwork to verify that the changes have been made at the laboratory.

4.0 RECORDKEEPING AND REPORTING

Required reports, information, and addresses for receipt of reports are listed in Enclosure 6.

5.0 LIQUIDATED DAMAGES

Date: May 1996

Any subsequent subcontract issue as a result of this solicitation will be subject to Liquidated Damages Without limiting any of Buyer's rights or remedies under this subcontract or applicable law, Buyer and Seller agree that if the Seller fails to complete the work by the completion date specified in this subcontract the actual damages incurred by Buyer as a result of the delay may be difficult or impossible to determine. Therefore, Seller agrees in place of actual damages, to pay to the Buyer liquidated damages in the sum of \$200 for each calendar day of delay beyond the completion date specified in this subcontract, including any extension.

Delivery of defective EDDs (i.e. blank disk or the format is not as agreed upon in the contract, or is not compliant with the reportable analytes, surrogates, units and flags) is considered the same as no delivery of data.

Revision:

0

Date: May 1996

Page 10 of 9

6.0 INVOICING

Invoices shall include item descriptions consistent with the nomenclature of Enclosure (3), Price Schedule.

All charges associated with one sample delivery group shall appear on the same invoice, and Ogden sample identification numbers associated with the SDG will be itemized. The charges will be listed separately for each SDG and will be accompanied by a copy of the chain of custody's associated with that SDG.

SOW for Analytical Services at NAS Agana Revision: 0

Date: May, 1996

ENCLOSURE 1

Summary of Sample Numbers, Analytical Methods, and Matrices

EPA Level III (Level C)

Test	Analytical Method	Soil Samples	Water Samples	Water Samples Low-level meth
Volatile Organics	OLM03.2V	34	24	
Total Fuel Hydrocarbons	EPA 8015B/OG	25	20	-
Semi-volatile Organics	OLM03.2B	25	20	-
Pesticide/ PCBs	OLM03.2P	25	20	<u>-</u>
Metals	ILM04.1	25	20	_
TCLP- (40CFR- § 261.24)	EPA 1311	8		_
Dioxins	EPA 8290	3	2	_
Asbestos	EPA 600 R 93	30	-	<u>-</u>
Lead-paint	EPA 6010 for Pb	10		<u>-</u>
Metals	EPA 6010/7470	•	-	_ 3
Poly Aromatic Hydrocarbons	EPA 8270-SIM	-	_	3
Pesticide/PCBs	EPA 8082	-	-	3

Note: Water Samples include groundwater samples, duplicates, trip blanks (soil and water), Field Blanks (soil) and Equipment Rinsates (soil). Low level water samples to be reported to MDL. Method modifications to achieve lower detection limits for the indicated water samples should be included in the laboratories RFP response.

0

Date: May 1996

ENCLOSURE 2

Required Supplies, Sample Storage, and Sample Disposal

Samples for analytical measurements should arrive at the laboratory approximately 2 to 3 days after sample collection. Samples may be shipped by Federal Express or equivalent. The holding times for all samples will start on the day of field collection.

Ogden expects that the laboratory will provide the following supplies and assistance in preparation for the required analytical efforts:

- Provide all required sample containers and associated materials/chemicals (e.g., preservatives) for samples. Provide copy of soil importation permit. The laboratory will ship the containers directly to a Ogden designated location near the project site. Shipments are to be sent via Federal Express or equivalent.
- Provide COC forms, adhesive sample labels, and custody seals.
- Provide sample containers for water samples as listed in Enclosure (1), plus two extra
 containers per method as backup. Provide preservatives with instructions that detail
 volumes to be added along with which container to use for the appropriate test.
 Provide an inventory of all the materials sent to the field team, which is to include all
 items discussed above. Ogden will supply sleeves for soil samples.
- Provide all sample storage at laboratory facilities as well as final disposal of analysis extracts and unused sample materials. Sample extracts shall be stored for 180 days after delivery of the full data package to Ogden, and samples shall be stored for 60 days after data package delivery. Sample storage shall be refrigeration or freezing as appropriate and include appropriate cataloguing and documentation that allows samples and extracts to be easily located and retrieved as necessary.
- Timing and requirements for all "container kit" shipments must be done in close coordination with the Ogden Project Coordinator or designee.

SOW for Analytical Services at NAS Agana	Revision:	0
Date: May 1996	`	

ENCLOSURE 3A

Price Schedule-Soils/Sediments

EPA Level III -35 Day TAT Deliverables

Test	Analytical Method	Quantity Soil Samples	Unit Price	Extended Price
Volatile Organics	OLM03.2V	34		
Fuel Hydrocarbons	8015B/OG	25		1
Semi-volatile Organics	OLM03.2B	25		
PCBs	OLM03.2P	25		
Metals	ILM04.1	25		
TCLP-(40CFR- § 261.24)	EPA 1311	8		
Dioxins	EPA 8290	3		
Asbestos	EPA 600 R 93	30		
Lead-paint	EPA 6010 for Pb	10		

GRAN.	D TO	TC	AL	ı	

Revision:

O

Date: May 1996

ENCLOSURE 3B

Price Schedule -Ground waters

EPA Level III –35 Day TAT Deliverables

SOW	for	Analyt	ical	Services	at :	NAS	Agana
-----	-----	--------	------	----------	------	-----	-------

U

Date: May 1996

Test	Analytical Method	Quantity Water Samples	Unit Price	Extended Price \$
Volatile Organics	OLM03.2V	12		
Fuel Hydrocarbons	8015B/OG	10		
Semi-volatile Organics	OLM03.2B	10		
PCBs	OLM03.2P	10		
Metals	ILM04.1	10		
Dioxins	EPA 8290	11		

GRAND	TOTAL	

EPA Level III -35 Day TAT Deliverables

Test	Analytical Method	Quantity Water Samples	Unit Price	Extended Price
Metals-low level	EPA 6010/7470	3		
PAHs-low level	EPA 8270-SIM	3		
Pesticide/PCBs-low level	EPA 8082	3		

GRANDTOTAL	1	

Date: May 1996

ENCLOSURE 4

Ogden Control Library

The attached information is the Ogden control library which lists analytes, CAS numbers, and units used in reporting. In the space provided, the laboratory must provide responses to the five requests for information (see below) which enable Ogden to evaluate the laboratory method detection limits, spiking levels, and acceptance ranges, in addition to other information required for quality control and efficient electronic transfer of data.

- 1) The laboratory must enter the MDL in the second column of the control library for each of the methods.
- 2) The laboratory needs to examine the control library analyte order, between the keyword "TARGETS" and "END METHOD". If the lab is going to deliver hard copy reports of the analytes in any other order than provided in the control library, the order in which the laboratory chooses to report their data must be entered on the control library in that order immediately before the analyte name. This insures continuity between hard copy and electronic data, simplifying data verification and validation.
- 3) On the control chart the laboratory must fill in the outlined boxes for the following information: "SURR SPIKE AMOUNT", "SURR LOW% LIMIT", and "SURR HIGH% LIMIT" for all organic analysis method surrogates. One copy of each sheet must be completed for each matrix.
- 4) On the control chart the laboratory must fill in the outlined boxes for the following information: "MS/MSD AMOUNT", "/MSD LOW% LIMIT" and "MS/MSD HIGH% LIMIT" for appropriate matrix spike analytes for organic analysis methods, and spike samples for inorganic analysis methods. One copy of each sheet must be completed for each matrix.
- 5) On the control chart the laboratory must fill in the outlined boxes for the following information: "MBS SPIKE AMT", "MBS LOW% LIMIT" and "MBS HIGH% LIMIT" for appropriate method blank spike analytes for organic analysis methods, and laboratory control samples for inorganic analysis methods. One copy of each sheet must be completed for each matrix.

SOW for Analytical Services at NAS Ag

0

Date: May 1996

ENCLOSURE 5

Requested Sample Quantity

Test .	Analytical Method	Soil Volume (g)	Water Volume (mL)
Volatile Organics	OLM03.2V	. (8/	(
Total Fuel Hydrocarbons	EPA 8015B/OG		
Semi-volatile Organics	OLM03.2B		
Pesticide/ PCBs	OLM03.2P		
Metals	ILM04.1		
TCLP- (40CFR- § 261.24)	EPA 1311		
Dioxins	EPA 8290		
Asbestos	EPA 600 R 93		N/A
Lead-paint	EPA 6010 for Pb		N/A
Metals- low level	EPA 6010/7470	N/A	
PAHs- low level	EPA 8270-SIM	N/A	
Pesticide/PCBs- low level	EPA 8082	N/A	

0

Date: May 1996

ENCLOSURE 6

Deliverables and Addresses

Deliverables

- Data Submittal Letter
 1 copy to San Diego Purchasing Department, Attention Shari Simon
- 2. Summary Data Package
 - 1 copy to Project Manager, Ogden Honolulu
 - 1 copy to Laboratory Coordinator, Ogden San Diego
 - 1 copy to Validation Coordinator, Ogden Denver
- 3. Full Data Package
 - 1 copy to Laboratory Coordinator, Ogden San Diego
 - 1 copy to Validation Coordinator, Ogden Denver
- 4. Electronic Data Deliverables
 - 1 copy to Information Systems Manager, Ogden San Diego
 - 1 copy to <EDD@oees.com>
- 5. Completed COC forms, laboratory check-in paperwork (including sample condition upon receipt), and SDG designation sheet to be sent by fax and mail as sample SDG is completed.
 - 1 copy to Laboratory Coordinator, Ogden San Diego
- 6. Non-conformance reports or Corrective Action Reports to be sent within 12 hours of occurrence
 - 1 copy to Project Manager, Ogden Honolulu
 - 1 copy to Laboratory Coordinator, Ogden San Diego

Ogden Addresses

Ogden Environmental and Energy Services-Honolulu 680 Iwellei Road, Suite 660, Honolulu, Hawaii 96817

Ogden Environmental and Energy Services-SD 5510 Morehouse Drive San Diego, CA 92121-1709

Ogden Environmental and Energy Services-Denver 550 South Wadsworth Blvd, Suite 500 Lakewood, CO 80226

Revision:

0

Date: May 1996

SOW	for Ana	lytical	Services	at NAS	Agana
------------	---------	---------	----------	--------	-------

n

Date: May 1996

ENCLOSURE 7

Ogden Electronic Data Deliverable Format, "OG794"